Mathematical modelling

15. 6. 2018
1. Given the system of equations $3 x+y+z=5$ in $x+y+z=1$,
(a) write down the matrix of the system,
(b) find its Moore-Penrose inverse A^{+},
(c) find the point on the intersection of the planes $3 x+y+z=5$ in $x+y+z=1$ closest to the origin.

Solution :

(a) The matrix of the system is

$$
A=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(b) Since A is a $2 x 3$ rank matrix with rank 2 , the Moore-Penrose pseudoinverse can be computed as

$$
A^{+}=A^{T}\left(A A^{T}\right)^{-1}=\frac{1}{4}\left[\begin{array}{cc}
2 & -2 \\
-1 & 3 \\
-1 & 3
\end{array}\right]
$$

(c) The intersection of the planes closest to the origin can be computed simply as

$$
x=A^{+} b=\frac{1}{2}\left[\begin{array}{c}
4 \\
-1 \\
-1
\end{array}\right]
$$

where

$$
b=\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

is the right-hand side of the system of equations.
2. For the vector valued function

$$
f(u, v)=\left[\begin{array}{c}
u e^{v}+\cos (\pi v) \\
u^{2} \\
u-e^{v}
\end{array}\right]
$$

(a) write down its Jacobian matrix,
(b) write down its linear approximation at the point $u=1, v=0$,
(c) use the linear approximation to compute the approximate value of $f(1.02,0.01)$

Solution :

(a)

$$
J f(u, v)=\left[\begin{array}{cc}
e^{v} & u e^{v}-\pi \sin (\pi v) \\
2 u & 0 \\
1 & -e^{v}
\end{array}\right]
$$

(b) The linear approximation at the point $(1,0)$ can be expressed as

$$
\ell(x, y)=f(1,0)+J f(1,0)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2+x+y \\
1+2 x \\
x-y
\end{array}\right]
$$

(c) We compute

$$
\ell(0.02,0.01)=\left[\begin{array}{l}
2.03 \\
1.04 \\
0.01
\end{array}\right]
$$

3. Given the parametric curve $x(t)=t^{2}, y(t)=t^{3}-3 t$
(a) find intersections with coordinate axes,
(b) show that there is a selfintersction at $(3,0)$ and write down the two tangents to the curve at this point,
(c) find points with a horizontal or vertical tangent and sketch the curve.
(d) Is the curve smooth? Why or why not?

Solution :

(a) The equation $x(t)=0$ has solutions $t_{1,2}=0$ which gives the intersection with the y-coordinate axis at $A(0,0)$. The equation $y(t)=0$ has the solutions $t_{1}=0$ and $t_{2,3}= \pm \sqrt{3}$ which gives the intersections with the x-coordinate axis at $A(0,0)$ and $B(3,0)$.
(b) From the previous exercise we see the curve goes through the point $B(3,0)$ for two values of the parameter $t= \pm \sqrt{3}$ so the curve clearly has a selfintersection at this point. In parametric form the tangent lines can be expressed as

$$
\begin{aligned}
& t_{1}(t)=r(\sqrt{3})+\dot{r}(\sqrt{3}) t=\left[\begin{array}{c}
3+2 \sqrt{3} t \\
6 t
\end{array}\right] \\
& t_{2}(t)=r(-\sqrt{3})+\dot{r}(-\sqrt{3}) t=\left[\begin{array}{c}
3-2 \sqrt{3} t \\
6 t
\end{array}\right]
\end{aligned}
$$

(c) The curve is not smooth at the point $B(3,0)$ since its derivative at this point is not uniquely defined.
4. For the order 2 linear differential equation $\ddot{x}-3 \dot{x}+2 x=0$
(a) write it in the form of a system of first order equations,
(b) find the general solution,
(c) find the solution satisfying the initial condition $x(0)=0, \dot{x}(0)=2$,
(d) classify $(0,0)$ as a critical point and sketch the phase portrait in the (x, v) plane.

Solution :

(a) By introducing the new variable $v=\dot{x}$ the equation can be written as the following first order system of equations:

$$
\begin{aligned}
\dot{x} & =v \\
\dot{v} & =3 v-2 x
\end{aligned}
$$

(b) The characteristic equation is

$$
\lambda^{2}-3 \lambda+2=0
$$

which has solutions $\lambda_{1}=1$ and $\lambda_{2}=2$. The general solution has the form

$$
x(t)=A e^{t}+B e^{2 t}
$$

(c) Using the initial values we can find the values of the constants A and B in the general solution $A=-2$ and $B=2$ and write

$$
x(t)=-2 e^{t}+2 e^{2 t}
$$

(d) The point $(0,0)$ is unstable because the solution contains exponentials functions with positive coefficients in the exponent.

