Mathematical modelling

$20. \ 6. \ 2019$

- 1. We are given four points: (0, 1), (-1, 0), (1, 2), (2, 3). We would like to fit a function of the form $ax^2 + bx$ to these points.
 - (a) Write down the matrix A of the corresponding system of linear equations.
 - (b) Find the Moore-Penrose inverse A^+ .
 - (c) Find the function of the above form that fits the points best according to the least squares criterion.
 - (d) Find one more generalized inverse of A.
- 2. Given the parametric curve $\gamma(t) = (t^3 t + 1, t^2)$:
 - (a) Find selfintersections of γ .
 - (b) Find the angle at which γ intersects itself in the selfintersections.
 - (c) Find the point at which γ reaches its lowest level (smallest y co-ordinate).
- 3. Solve the differential equation $xy' = y + 2x^3$ with the initial condition y(2) = 3.
- 4. Solve the differential equation y'' + y' 6y = 36x. with the initial condition y(0) = y'(0) = 1.