Mathematical modelling

20. 6. 2019

1. We are given four points: $(0,1),(-1,0),(1,2),(2,3)$. We would like to fit a function of the form $a x^{2}+b x$ to these points.
(a) Write down the matrix A of the corresponding system of linear equations.
(b) Find the Moore-Penrose inverse A^{+}.
(c) Find the function of the above form that fits the points best according to the least squares criterion.
(d) Find one more generalized inverse of A.
2. Given the parametric curve $\gamma(t)=\left(t^{3}-t+1, t^{2}\right)$:
(a) Find selfintersections of γ.
(b) Find the angle at which γ intersects itself in the selfintersections.
(c) Find the point at which γ reaches its lowest level (smallest y coordinate).
3. Solve the differential equation $x y^{\prime}=y+2 x^{3}$ with the initial condition $y(2)=3$.
4. Solve the differential equation $y^{\prime \prime}+y^{\prime}-6 y=36 x$. with the initial condition $y(0)=y^{\prime}(0)=1$.
