Mathematical modelling, Exam 2

5. 7. 2019

1. The system of equations $2 x-y+z=3$ and $-x+2 y-z=1$ can be expressed in the form $A x=b$.
(a) Find the Moore-Penrose inverse of A, A^{\dagger}.
(b) Describe the property uniquely characterizing the point $A^{\dagger} b$ with respect to the system.
(c) Construct any single matrix, which has the following matrices as their generalized inverses: $\left[\begin{array}{cccc}3 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0\end{array}\right],\left[\begin{array}{cccc}0 & 0 & 3 & 2 \\ 0 & 0 & 1 & -1\end{array}\right]$.

Solution.

(a) The matricial form of the system is the following:

$$
\underbrace{\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1
\end{array}\right]}_{A}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\underbrace{\left[\begin{array}{l}
3 \\
1
\end{array}\right]}_{b} .
$$

Since $\operatorname{rank} A=2$, also $\operatorname{rank}\left(A A^{T}\right)=2$ and hence A^{\dagger} is equal to

$$
\begin{aligned}
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1} & =\left[\begin{array}{cc}
2 & -1 \\
-1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
6 & -5 \\
-5 & 6
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
2 & -1 \\
-1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
\frac{6}{11} & \frac{5}{11} \\
\frac{5}{11} & \frac{6}{11}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{7}{11} & \frac{4}{11} \\
\frac{4}{11} & \frac{7}{11} \\
\frac{1}{11} & -\frac{1}{11}
\end{array}\right] .
\end{aligned}
$$

(b) Since $A \in \mathbb{R}^{2 \times 3}$ and rank $A=2$, it follows that the system $A x=b$ is solvable and the kernel of A is one-dimensional. Hence, there is a one-dimensional family of solutions of the system $A x=b$. The vector $A^{\dagger} b$ is the solution of the system of the smallest norm among all solutions.
(c) The matrix A is of size 4×2. By construction of some generalized inverses, the matrix

$$
\left[\begin{array}{cccc}
3 & 2 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]
$$

is a generalized inverse of any matrix of the form

$$
\left[\begin{array}{cc}
{\left[\begin{array}{cc}
3 & 2 \\
1 & -1
\end{array}\right]^{-1}}
\end{array}\right]
$$

where $X \in \mathbb{R}^{2 \times 2}$ is any matrix, and the matrix

$$
\left[\begin{array}{cccc}
0 & 0 & 3 & 2 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

is a generalized inverse of any matrix of the form

$$
\left[\begin{array}{c}
Y \\
{\left[\begin{array}{cc}
3 & 2 \\
1 & -1
\end{array}\right]^{-1}}
\end{array}\right]
$$

where $Y \in \mathbb{R}^{2 \times 2}$ is any matrix. Hence,

$$
A=\left[\begin{array}{cc}
{\left[\begin{array}{cc}
3 & 2 \\
1 & -1
\end{array}\right]^{-1}} \\
{\left[\begin{array}{cc}
3 & 2 \\
1 & -1
\end{array}\right]^{-1}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{1}{5} & -\frac{3}{5} \\
\frac{1}{5} & \frac{2}{5} \\
\frac{1}{5} & -\frac{3}{5}
\end{array}\right] .
$$

2. Given the parametric curve $\gamma(t)=[2 \cos (t), 2 \sin (t),-t]^{\top}$:
(a) Sketch/describe γ.
(b) Parameterize γ with a natural parameter.
(c) Find the length of γ between points $(2,0,0)$ and $(2,0,2 \pi)$.

Solution.
(a) The sketch of γ is the following:

(b) The natural parameter $s(t)$, which measures the arc length between the points $\gamma(0)$ and $\gamma(t)$ is

$$
\begin{aligned}
s(t)=\int_{0}^{t}\left\|\gamma^{\prime}(u)\right\| d u & =\int_{0}^{t} \|(-2 \sin u, 2 \cos u,-1 \| d u \\
& =\int_{0}^{t} \sqrt{4 \sin ^{2} u+4 \cos ^{2} u+1} d u \\
& =\int_{0}^{t} \sqrt{5} d u=t \sqrt{5}
\end{aligned}
$$

Hence, $t(s)=\frac{s}{\sqrt{5}}$ and the parametrization of the curve with the natural parameter s is

$$
\gamma(s)=\left(2 \cos \left(\frac{s}{\sqrt{5}}\right), 2 \sin \left(\frac{s}{\sqrt{5}}\right),-\frac{s}{\sqrt{5}}\right) .
$$

(c) The point $(2,0,0)$ corresponds to $t=0$, while $(2,0,2 \pi)$ to $t=$ -2π. Hence, the arc length between this points equals by symmetry to $s(2 \pi)=2 \pi \sqrt{5}$.
3. Find the solution y of the differential equation $x^{2} y^{\prime}+x y+3=0$ with the initial condition $y(1)=1$.
Solution. First we solve the homogeneous part of the DE:

$$
\begin{aligned}
x^{2} y^{\prime}+x y=0 \Rightarrow-\frac{d y}{y}=\frac{d x}{x} & \Rightarrow-\ln |y|=\ln |x|+k \\
& \Rightarrow y_{h}(x)=\frac{K}{x},
\end{aligned}
$$

where $k, K \in \mathbb{R}$ are constants. Now we have to determine one particular solution. By variation of constants the form of the particular solution is

$$
y_{p}(x)=\frac{K(x)}{x},
$$

where $K(x)$ is a function of x. Thus,

$$
\begin{equation*}
y_{p}^{\prime}(x)=\frac{K^{\prime}(x) x-K(x)}{x^{2}} \tag{1}
\end{equation*}
$$

and plugging (1) into the initial DE we get

$$
x^{2} \cdot \frac{K^{\prime}(x) x-K(x)}{x^{2}}+x \frac{K(x)}{x}+3=0 .
$$

Equivalently,

$$
\begin{equation*}
K^{\prime}(x) x+3=0 . \tag{2}
\end{equation*}
$$

We solve the $\mathrm{DE}(2)$ by separation of variables:

$$
-\frac{d K}{3}=\frac{d x}{x} \quad \Rightarrow \quad-\frac{1}{3} K=\ln |x| \quad \Rightarrow \quad K=\ln \frac{1}{|x|^{3}} .
$$

Since in the initial conditin $x>0$, we have $K=\ln \frac{1}{x^{3}}$ and $y_{p}(x)=$ $\ln \frac{1}{x^{3}} \cdot \frac{1}{x}$. So, the general solution of the DE is

$$
y(x)=y_{h}(x)+y_{p}(x)=\left(K+\ln \frac{1}{x^{3}}\right) \frac{1}{x} .
$$

The solution which passes through the point $(1,1)$ is

$$
y(1)=1=K+\ln 1 \quad \Rightarrow \quad K=1 \quad \Rightarrow \quad y(x)=\left(1+\ln \frac{1}{x^{3}}\right) \frac{1}{x} .
$$

4. Solve the following system of differential equations:

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)+5 y(t) \\
y^{\prime}(t) & =x(t)+2 y(t)
\end{aligned}
$$

with the initial conditions $x(0)=y(0)=1$.
Solution. The matricial form of the system is the following:

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-2 & 5 \\
1 & 2
\end{array}\right]}_{A}\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] .
$$

We compute the eigenvalues of A :

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{2}\right) & =\operatorname{det}\left[\begin{array}{cc}
-2-\lambda & 5 \\
1 & 2-\lambda
\end{array}\right]=(-2-\lambda)(2-\lambda)-5 \\
& =\lambda^{2}-9=(\lambda-3)(\lambda+3) .
\end{aligned}
$$

Thus the eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=-3$. The kernel of

$$
A-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
-5 & 5 \\
1 & -1
\end{array}\right]
$$

contains the vector

$$
u_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The kernel of

$$
A-\left[\begin{array}{cc}
-3 & 0 \\
0 & -3
\end{array}\right]=\left[\begin{array}{ll}
1 & 5 \\
1 & 5
\end{array}\right]
$$

contains the vector

$$
u_{2}=\left[\begin{array}{c}
-5 \\
1
\end{array}\right] .
$$

So, the general solution of the system is

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=C_{1} \cdot e^{3 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2} \cdot e^{-3 t} \cdot\left[\begin{array}{c}
-5 \\
1
\end{array}\right]
$$

where C_{1} and C_{2} are constants. The solution, which satisfies $x(0)=$ $y(0)=1$, is:

$$
\begin{aligned}
C_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2}\left[\begin{array}{c}
-5 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] & \Rightarrow C_{1}-5 C_{2}=1, \quad C_{1}+C_{2}=1 \\
& \Rightarrow C_{1}=1, C_{2}=0
\end{aligned}
$$

