Mathematical modelling, Exam 2

5. 7. 2019

1. The system of equations $2 x-y+z=3$ and $-x+2 y-z=1$ can be expressed in the form $A x=b$.
(a) Find the Moore-Penrose inverse of A, A^{\dagger}.
(b) Describe the property uniquely characterizing the point $A^{\dagger} b$ with respect to the system.
(c) Construct any single matrix, which has the following matrices as their generalized inverses: $\left[\begin{array}{cccc}3 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0\end{array}\right],\left[\begin{array}{cccc}0 & 0 & 3 & 2 \\ 0 & 0 & 1 & -1\end{array}\right]$.
2. Given the parametric curve $\gamma(t)=[2 \cos (t), 2 \sin (t),-t]^{\top}$:
(a) Sketch/describe γ.
(b) Parameterize γ with a natural parameter.
(c) Find the center and the radius of the osculating circle to γ at the point ($2,0,0$).
(d) Find the length of γ between points $(2,0,0)$ and $(2,0,2 \pi)$.
3. Find the solution y of the differential equation $x^{2} y^{\prime}+x y+3=0$ with the initial condition $y(1)=1$.
4. Solve the following system of differential equations:

$$
\begin{aligned}
& x^{\prime}(t)=-2 x(t)+5 y(t), \\
& y^{\prime}(t)=x(t)+2 y(t),
\end{aligned}
$$

with the initial conditions $x(0)=y(0)=1$.

