Mathematical modelling, Exam 2

5. 7. 2019

- 1. The system of equations 2x y + z = 3 and -x + 2y z = 1 can be expressed in the form Ax = b.
 - (a) Find the Moore-Penrose inverse of A, A^{\dagger} .
 - (b) Describe the property uniquely characterizing the point $A^{\dagger}b$ with respect to the system.
 - (c) Construct any single matrix, which has the following matrices as their generalized inverses: $\begin{bmatrix} 3 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 3 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$.

2. Given the parametric curve $\gamma(t) = [2\cos(t), 2\sin(t), -t]^{\mathsf{T}}$:

- (a) Sketch/describe γ .
- (b) Parameterize γ with a natural parameter.
- (c) Find the center and the radius of the osculating circle to γ at the point (2,0,0).
- (d) Find the length of γ between points (2, 0, 0) and $(2, 0, 2\pi)$.
- 3. Find the solution y of the differential equation $x^2y' + xy + 3 = 0$ with the initial condition y(1) = 1.
- 4. Solve the following system of differential equations:

$$x'(t) = -2x(t) + 5y(t),$$

 $y'(t) = x(t) + 2y(t),$

with the initial conditions x(0) = y(0) = 1.