Mathematical modelling, Exam 3

22. 8. 2019

1. (a) Construct any non-diagonal 3×2 matrix A whose singular values are 2 and 1 .
(b) Find the Moore-Penrose inverse A^{+}.
(c) Let $b \in \mathbb{R}^{2}$. Describe the property uniquely characterizing point $A^{+} \cdot b$ with respect to the system $A x=b$.
Solution.
(a) One possible solution is

$$
A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{3}{2} \\
0 & 0
\end{array}\right] .
$$

(b) The Moore-Penrose inverse of A is

$$
A^{\dagger}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]^{T}\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{ccc}
\frac{3}{4} & -\frac{1}{4} & 0 \\
-\frac{1}{4} & \frac{3}{4} & 0
\end{array}\right] .
$$

(c) If the system $A x=b$ is solvable, then the vector $A^{\dagger} b$ is the solution of the system of the smallest norm among all solutions. Otherwise the vector $A^{\dagger} b$ is the unique solution of the system of the smallest norm w.r.t. the least squares method, i.e.,

$$
\left\|A\left(A^{\dagger} b\right)-b\right\|=\min \left\{\|A x-b\|: x \in \mathbb{R}^{2}\right\} .
$$

2. Two surfaces in the upper halfspace $z>0$ are given by the following equations:

$$
\Pi: x^{2}+y^{2}=\frac{z^{2}}{2} \quad \Sigma: x^{2}+y^{2}=z .
$$

Curve γ is the intersection of surfaces Π and Σ. Let $P=(1,1,2) \in \gamma$.
(a) Find the angle at which the surfaces intersect at P.
(b) Find the line tangent to γ at P.
(c) Find the plane that is tangent to Σ at $(1,2,5)$.

Solution.

(a) The angle at which the surfaces intersect at P is the angle between the normals to their tangent planes at the point P, i.e., between their gradients at the point P :

$$
\begin{aligned}
& \arccos \left(\frac{\langle(\operatorname{grad} \Pi)(P),(\operatorname{grad} \Sigma)(P)\rangle}{\| \operatorname{grad} \Pi)(P)\|\| \operatorname{grad} \Sigma)(P) \|}\right) \\
& =\arccos \left(\frac{\langle(2 x, 2 y,-z)(P),(2 x, 2 y,-1)(P)\rangle}{\|(2 x, 2 y,-z)(P)\|\|(2 x, 2 y,-1)(P)\|}\right) \\
& =\arccos \left(\frac{\langle(2,2,-2),(2,2,-1)\rangle}{\|(2,2,-2)\|\|(2,2,-1)\|}\right)=\arccos \left(\frac{10}{\sqrt{12} \sqrt{9}}\right) \\
& =\arccos \left(\frac{5}{3 \sqrt{3}}\right) \approx 0.28 .
\end{aligned}
$$

(b) The intersection of the surfaces satisfies

$$
x^{2}+y^{2}=\frac{\left(x^{2}+y^{2}\right)^{2}}{2} \Rightarrow 2=x^{2}+y^{2} \quad \Rightarrow \quad z=2 .
$$

So this is a circle with the parametrization

$$
\gamma(t)=(\sqrt{2} \cdot \cos t, \sqrt{2} \cdot \sin t, 2)
$$

The tangent to this circle in the point $(1,1,2)$, which corresponds to $t=\frac{\pi}{4}$, is

$$
\begin{aligned}
\ell(\lambda) & =(1,1,2)+\lambda \cdot\left(\gamma^{\prime}\left(\frac{\pi}{4}\right)\right) \\
& =(1,1,2)+\lambda \cdot\left((-\sqrt{2} \cdot \sin t, \sqrt{2} \cdot \cos t, 0)\left(\frac{\pi}{4}\right)\right) \\
& =(1,1,2)+\lambda \cdot(-1,1,0) .
\end{aligned}
$$

(c) The tangent plane to Σ at $Q:=(a, b, c)=(1,2,5)$, which is given implicitly by the equation

$$
F(x, y, z)=0
$$

where

$$
F(x, y, z):=x^{2}+y^{2}-z,
$$

is determined by

$$
\begin{aligned}
0 & =\left(\frac{\partial F}{\partial x}(Q)\right) \cdot(x-a)+\left(\frac{\partial F}{\partial y}(Q)\right) \cdot(y-b)+\left(\frac{\partial F}{\partial z}(Q)\right) \cdot(z-c) \\
& =((2 x)(Q)) \cdot(x-1)+((2 y)(Q)) \cdot(y-2)+((-1)(Q)) \cdot(z-5) \\
& =2(x-1)+4(y-2)-(z-5) .
\end{aligned}
$$

3. Solve the following exact differential equation $2 x y+\left(x^{2}+3 y^{2}\right) y^{\prime}=0$.

Solution. The DE is of the form

$$
2 x y d x+\left(x^{2}+3 y^{2}\right) d y=0
$$

It is indeed exact, since

$$
\frac{d(2 x y)}{d y}=\frac{d\left(x^{2}+3 y^{2}\right)}{d x}=2 x .
$$

We have that

$$
\begin{aligned}
\int 2 x y d x & =x^{2} y+C(y) \\
\int\left(x^{2}+3 y^{2}\right) d x & =x^{2} y+y^{3}+D(x)
\end{aligned}
$$

where $C(y)$ and $D(x)$ are functions of y and x. Hence, the solution of the DE is a family of functions

$$
u(x, y, K)=x^{2} y+y^{3}+K
$$

where $K \in \mathbb{R}$ is a constant.
4. Solve the differential equation $y^{\prime \prime}+9 y=2 x^{2}-1$. with the initial condition $y(0)=y^{\prime}(0)=1$.
Solution. First we solve the homogeneous part of the DE:

$$
y^{\prime \prime}+9 y=0 .
$$

The characteristic polynomial is

$$
p(\lambda)=\lambda^{2}+9=(\lambda-3 i)(\lambda+3 i)
$$

with zeroes $\lambda_{1}=3 i, \lambda_{2}=-3 i$. Hence, the solution of the homogeneous part is

$$
y_{h}(x)=C e^{3 i x}+D e^{-3 i x}
$$

where $C, D \in \mathbb{C}$ are constants. Another way of expressing all solutions of the DE is

$$
y_{h}(x)=C \cos (3 x)+D \sin (3 x),
$$

where $C, D \in \mathbb{C}$ are constants.
To obtain a particular solution we can try with the form

$$
\begin{equation*}
y_{p}(x)=a x^{2}+b x+c \quad \Rightarrow \quad y_{p}^{\prime}(x)=2 a x+b \quad \Rightarrow \quad y_{p}^{\prime \prime}(x)=2 a . \tag{1}
\end{equation*}
$$

Plugging (1) into the DE we obtain

$$
\begin{equation*}
2 a+9\left(a x^{2}+b x+c\right)=2 x^{2}-1 . \tag{2}
\end{equation*}
$$

Comparing the coefficients at $x^{2}, x, 1$ on both sides of (2) we obtain a system

$$
9 a=2, \quad 9 b=0, \quad 2 a+9 c=-1,
$$

with the solution

$$
a=\frac{2}{9}, \quad b=0, \quad c=-\frac{13}{81} .
$$

Hence, the general solution of the DE is

$$
y(x)=y_{h}(x)+y_{p}(x)=C \cos (3 x)+D \sin (3 x)+\frac{2}{9} x^{2}-\frac{13}{81} .
$$

The one satisfying the initial conditions

$$
\begin{aligned}
y(0) & =C-\frac{13}{81}=1, \\
y^{\prime}(0) & =3 D=1,
\end{aligned}
$$

is the one with

$$
C=\frac{94}{81}, \quad D=\frac{1}{3} .
$$

So the final solution is

$$
y(x)=\frac{94}{81} \cos (3 x)+\frac{1}{3} \sin (3 x)+\frac{2}{9} x^{2}-\frac{13}{81} .
$$

