Mathematical Modelling Exam

June 5th, 2024
You have 90 minutes to solve the problems. The numbers in [•] represent points.

1. Answer the following questions. In YES/NO questions verify your reasoning.
(a) [2] Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^{m}$ a vector. The orthogonal projection of b to the linear span of the columns of A is equal to $A A^{+} b$. YES/NO

Solution: Yes. $x=A^{+} b$ is a least squares error solution of the system $A x=b$. This can be equivalently expressed by saying that $A\left(A^{+} b\right)$ is an orthogonal projection of b to $\mathcal{C}(A)$.
(b) [2] Assume that the Gauss-Newton method used to solve an overdetermined system $f(x)=0$ converges to $\tilde{x} \in \mathbb{R}^{n}$ for some initial approximation $x^{(0)}$. Then \tilde{x} is a least squares error solution to the system. YES/NO

Solution: No. Gauss-Newton method can converge to one of the local minima of the function $f_{1}^{2}+\ldots+f_{m}^{2}$, where f_{1}, \ldots, f_{m} are coordinate functions of f.
(c) [2] Let $\mathcal{C}=\{(x(t), y(t)): t \in \mathbb{R}\}$ be some curve in the $x y$-plane. Let \mathcal{S} be a surface obtained by revolving \mathcal{C} around x-axis for 360 degrees. Write down the parametrization of \mathcal{S}.

Solution: $\mathcal{S}=\{(x(t), y(t) \cos v, y(t) \sin v): t \in \mathbb{R}, v \in[0,2 \pi]\}$.
(d) [2] For every choice of the constants $c_{i} \in[0,1], a_{i j} \in[0, \infty)$ and $b_{i} \in[0,1]$, the Runge-Kutta method with a Butcher tableau

$$
\begin{array}{c|cccc}
0 & 0 & & & \\
c_{2} & a_{21} & 0 & & \\
c_{3} & a_{31} & a_{32} & 0 & \\
c_{4} & a_{41} & a_{42} & a_{43} & 0 \\
\hline & b_{1} & b_{2} & b_{3} & b_{4}
\end{array}
$$

for solving the differential equation $y^{\prime}(x)=f(x, y), y\left(x_{0}\right)=y_{0}$ will be of order 4 . YES/NO

Solution: No. When deriving the coefficients of the Butcher tableau it is important to make coefficients at h^{k}, for $k=1,2,3,4$, in the Taylor expansions of $y\left(x_{n}+h\right)$ and

$$
\begin{aligned}
y\left(x_{n}\right) & +b_{1} \underbrace{h f\left(x_{n}, y_{n}\right)}_{k_{1}}+b_{2} \underbrace{h f\left(x_{n}+c_{2} h, y_{n}+a_{21} k_{1}\right)}_{k_{2}} \\
& +b_{3} \underbrace{h f\left(x_{n}+c_{3} h, y_{n}+a_{31} k_{1}+a_{32} k_{2}\right)}_{k_{3}} \\
& +b_{4} h f\left(x_{n}+c_{4} h, y_{n}+a_{41} k_{1}+a_{42} k_{2}+a_{43} k_{3}\right)
\end{aligned}
$$

equal.
(e) [2] Let

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}, \\
& \dot{x}_{2}=(*), \\
& \dot{x}_{3}=(*), \\
& \dot{x}_{4}=-3 x_{1}+x_{2}+4 x_{3}+5 x_{4},
\end{aligned}
$$

by a system of differential equations, which comes in a standard way from some higher order differential equation with one dependent variable. What is (*) and what was the original differential equation?

Solution: $\dot{x}_{2}=x_{3}, \dot{x}_{3}=x_{4}$. The original DE was $x^{(4)}=-3 x+x^{\prime}+4 x^{\prime \prime}+5 x^{(3)}$.
2. We are given points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)$. We would like to determine α and β, such that the function

$$
f(x)=\cos \alpha \cdot e^{\beta x}
$$

fits best to the points in the sense of least squares error.
(a) [3] Write down explicitly the nonlinear system we have to solve. Identify the variables.

Solution: We have m conditions $f\left(x_{i}\right)=\cos \alpha \cdot e^{\beta x_{i}}=y_{i}, i=1, \ldots, m$. So we are solving the nonlinear system

$$
G(\alpha, \beta)=\left(\begin{array}{c}
G_{1}(\alpha, \beta) \\
G_{2}(\alpha, \beta) \\
\vdots \\
G_{m}(\alpha, \beta)
\end{array}\right)=\left(\begin{array}{c}
\cos \alpha \cdot e^{\beta x_{1}} \\
\cos \alpha \cdot e^{\beta x_{2}} \\
\vdots \\
\cos \alpha \cdot e^{\beta x_{m}}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right) .
$$

The variables are α, β.
(b) [4] Write one step of Gauss-Newton method for solving the problem. Determine the Jacobian matrix needed explicitly.

Solution: For Gauss-Newton method we need initial approximations α_{0}, β_{0} and then each step is equal to

$$
\binom{\alpha_{n+1}}{\beta_{n+1}}=\binom{\alpha_{n}}{\beta_{n}}-\left(J G\left(\alpha_{n}, \beta_{n}\right)\right)^{+} G\left(\alpha_{n}, \beta_{n}\right),
$$

where

$$
\left.J G\left(\alpha_{n}, \beta_{n}\right)\right)=\left(\begin{array}{cc}
\frac{\partial G_{1}\left(\alpha_{n}, \beta_{n}\right)}{\partial \alpha} & \frac{\partial G_{1}\left(\alpha_{n}, \beta_{n}\right)}{\partial \beta} \\
\frac{\partial G_{2}\left(\alpha_{n}, \beta_{n}\right)}{\partial \alpha} & \frac{\partial G_{2}\left(\alpha_{n}, \beta_{n}\right)}{\partial \beta} \\
\vdots & \\
\frac{\partial G_{m}\left(\alpha_{n}, \beta_{n}\right)}{\partial \alpha} & \frac{\partial G_{m}\left(\alpha_{n}, \beta_{n}\right)}{\partial \beta}
\end{array}\right)=\left(\begin{array}{cc}
-\sin \alpha_{n} \cdot e^{\beta_{n} x_{1}} & \cos \alpha_{n} \cdot x_{1} e^{\beta_{n} x_{1}} \\
-\sin \alpha_{n} \cdot e^{\beta_{n} x_{2}} & \cos \alpha_{n} \cdot x_{2} e^{\beta_{n} x_{2}} \\
\vdots & \\
-\sin \alpha_{n} \cdot e^{\beta_{n} x_{m}} & \cos \alpha_{n} \cdot x_{m} e^{\beta_{n} x_{m}}
\end{array}\right)
$$

(c) [3] Compute $J^{T} J$ explicitly, where J is the Jacobian from the previous question and comment on the efficient way of computing J^{+}. You do not need to compute J^{+}explicitly.

Solution: We have that

$$
\begin{aligned}
& \left.\left.\left(J G\left(\alpha_{n}, \beta_{n}\right)\right)\right)^{T} J G\left(\alpha_{n}, \beta_{n}\right)\right) \\
& =\left(\begin{array}{cc}
\sin ^{2} \alpha_{n} \cdot \sum_{i=1}^{m} e^{2 \beta_{n} x_{i}} & -\sin \alpha_{n} \cos \alpha_{n} \cdot \sum_{i=1}^{m} x_{i} e^{2 \beta_{n} x_{i}} \\
-\sin \alpha_{n} \cos \alpha_{n} \cdot \sum_{i=1}^{m} x_{i} e^{2 \beta_{n} x_{i}} & \cos ^{2} \alpha_{n} \cdot \sum_{i=1}^{m} x_{i}^{2} e^{2 \beta_{n} x_{i}}
\end{array}\right) .
\end{aligned}
$$

So efficient way of computing $\left(J G\left(\alpha_{n}, \beta_{n}\right)\right)^{+}$is to compute

$$
\left.\left(\left(J G\left(\alpha_{n}, \beta_{n}\right)\right)\right)^{T} J G\left(\alpha_{n}, \beta_{n}\right)\right)^{-1} J G\left(\alpha_{n}, \beta_{n}\right)^{T} .
$$

3. Let

$$
x(t)=\sin ^{2} t, \quad y(t)=2 \cos t, \quad t \in \mathbb{R}
$$

be a curve.
(a) [7] Sketch the curve. Determine also all local extrema in x and y direction and all intersections with the axes.

Solution:

We have:
i. $x(t)=0 \Leftrightarrow \sin ^{2} t=0 \Leftrightarrow t=k \pi, k \in \mathbb{Z}$. So intersections with the y axis are $(0,2)$ (for $k \in 2 \mathbb{Z}$) and $(0,-2)$ (for $k \in 2 \mathbb{Z}+1$).
ii. $y(t)=0 \Leftrightarrow 2 \cos t=0 \Leftrightarrow t=\frac{\pi}{2}+k \pi, k \in \mathbb{Z}$. So the intersection with the x axis is $(0,1)$.
iii. $x^{\prime}(t)=0 \Leftrightarrow 2 \sin t \cos t=\sin 2 t=0 \Leftrightarrow t \in\left\{k \pi, \frac{\pi}{2}+k \pi\right\}, k \in \mathbb{Z}$. So local maxima of x are equal to 1 for $t=k \pi, k \in \mathbb{Z}$, while local minima of x are 0 for $t=\frac{\pi}{2}+k \pi, k \in \mathbb{Z}$.
iv. $y^{\prime}(t)=0 \Leftrightarrow-2 \sin t=0 \Leftrightarrow t=k \pi, k \in \mathbb{Z}$. So local maxima of y are equal to 2 for $t=2 k \pi, k \in \mathbb{Z}$, while local minima of y are -2 for $t=\pi+2 k \pi, k \in \mathbb{Z}$.
(b) [5] Compute the length of the trace of the curve.

Solution: Notice that the trace of the whole trace of the curve is obtained already when restricting t to $[0, \pi]$. So

$$
\begin{aligned}
\ell & =\int_{0}^{\pi}\left\|f^{\prime}(t)\right\| d t=\int_{0}^{\pi}\left\|\binom{\sin 2 t}{-2 \sin t}\right\| d t=\int_{0}^{\pi} \sqrt{\sin ^{2}(2 t)+4 \sin ^{2} t d t} \\
& =\int_{0}^{\pi} \sqrt{4 \sin ^{2} t\left(\cos ^{2} t+1\right)} d t=\int_{0}^{\pi} 2 \sin t \sqrt{\cos ^{2} t+1} d t=4 \int_{0}^{\pi / 2} \sin t \sqrt{\cos ^{2} t+1} d t \\
& =4 \int_{0}^{1} \sqrt{u^{2}+1} d u=4\left[\frac{1}{2} \log \left(u+\sqrt{1+u^{2}}\right)+\frac{1}{2} u \sqrt{1+u^{2}}\right]_{0}^{1}=2 \log (1+\sqrt{2})+2 \sqrt{2},
\end{aligned}
$$

where we introduced a substitution $u=\cos t$.
4. Let $x^{2}-y^{2}=a y, a \in \mathbb{R}$, be a family of curves.
(a) [5] Plot a few members of the family.

Solution:

(b) [5] Derive a differential equation determining orthogonal trajectories to the given family.

Solution: By differentiang w.r.t. x we have $2 x-2 y y^{\prime}=a y^{\prime}$. Hence, $a=\frac{2 x}{y^{\prime}}-2 y$. Using this in the original equation we get $x^{2}-y^{2}=\frac{2 x y}{y^{\prime}}-2 y^{2}$. Since for orthogonal trajectories y^{\prime} is $-\frac{1}{y^{\prime}}$, we get the $\mathrm{DE}-2 x y y^{\prime}=x^{2}+y^{2}$.
(c) [5] Solve the differential equation obtained.

Solution: We notice that the DE is homogeneous, i.e., $y^{\prime}=-\frac{1}{2} \frac{x}{y}-\frac{1}{2} \frac{y}{x}$. To solve the DE obtained we use a new variable $u=\frac{y}{x}$. Hence, $x u=y$ and $u+x u^{\prime}=y^{\prime}$. So the DE becomes $u+x u^{\prime}=-\frac{1}{2 u}-\frac{1}{2} u$. Hence, $\frac{2 u}{3 u^{2}+1} d u=-\frac{1}{x} d x$. Introducing a new variable $v=3 u^{2}+1$ we have $\frac{1}{3 v} d v=-\frac{1}{x} d x$. Hence, $\frac{1}{3} \log |v|=-\log K|x|$ and $v=\frac{K}{x^{3}}$. It follows that $3 u^{2}+1=3 \frac{y^{2}}{x^{2}}+1=\frac{K}{x^{3}}$. Finally, $3 y^{2} x+x^{3}=K, K \in \mathbb{R}$.

