Mathematical Modelling Exam

June 16th, 2024
You have 90 minutes to solve the problems. The numbers in [•] represent points.

1. Solve the following tasks:
(a) [6] Let $A \in \mathbb{R}^{n \times m}$ be a matrix and $G \in \mathbb{R}^{m \times n}$ one of its generalized inverses. Check that

$$
\operatorname{ker} A=\left\{(G A-I) z: z \in \mathbb{R}^{m}\right\} .
$$

(b) [6] Let \mathcal{C} be a circle in the $x z$-plane with radius r, centered at $(R, 0), R>r$. Check that a surface obtained by revolving \mathcal{C} around the z-axis satisfies the following cartesian equation:

$$
\left(x^{2}+y^{2}+z^{2}+R^{2}-r^{2}\right)^{2}=4 R^{2}\left(x^{2}+y^{2}\right) .
$$

2. Given are points $(0,4),(1,4),(2,2),(3,6)$. We would like to approximate the points in terms of the least squares error method with the function of the form

$$
g(x)=C(x-2)+D(x-2)^{2}
$$

(a) [2] Write down the linear system for unknowns C, D.
(b) [8] Compute the Moore-Penrose inverse A^{+}of the matrix A of this system.
(c) [2] Solve the system using A^{+}.
3. Let

$$
\mathbf{r}(t)=\left(t^{5}-4 t^{3}, t^{2}\right)
$$

be a parametrisation of a curve \mathcal{C} in \mathbb{R}^{2}.
(a) [8] Sketch the curve (determine intersections with both axes, self-intersections, horizontal and vertical tangents).
(b) [5] The curve \mathcal{C} has one loop. Compute the area of the region inside the loop.

Hint: When using the area formula determined by $\mathbf{r}(t)$ be careful on the sign change of the integrand.
4. Let

$$
y^{\prime \prime}-y^{\prime} y^{2}+y=0, y(0)=1, y^{\prime}(0)=0
$$

be a second order differential equation (DE).
(a) [3] Translate the DE into a system of first order DEs.
(b) [10] Use the Runge-Kutta method with a Butcher tableau

0	0	
1	1	0
	$\frac{1}{2}$	$\frac{1}{2}$

and a step size $h=0.2$ to estimate $y(0.2)$.

