Mathematical Modelling Exam

June 16th, 2024
You have 90 minutes to solve the problems. The numbers in [•] represent points.

1. Solve the following tasks.
(a) [6] Let $A \in \mathbb{R}^{n \times m}$ be a matrix and $G \in \mathbb{R}^{m \times n}$ one of its generalized inverses. Check that

$$
\operatorname{ker} A=\left\{(G A-I) z: z \in \mathbb{R}^{m}\right\}
$$

Solution. (\subseteq) : Let $v \in \operatorname{ker} A$. We have to check that there is $z \in \mathbb{R}^{m}$ such that $v=(G A-I) z$. By $(G A-I)(-v)=-G A v+v=v$, a good choice for z is $-v$.
$(\supseteq):$ Let $z \in \mathbb{R}^{m}$. Then $A(G A-I) z=A G A z-A z=A z-A z=0$, where we used that G is a generalized inverse of A in the second equality.
(b) [6] Let \mathcal{C} be a circle in the $x z$-plane with radius r, centered at $(R, 0), R>r$. Check that a surface obtained by revolving \mathcal{C} around the z-axis satisfies the following cartesian equation:

$$
\left(x^{2}+y^{2}+z^{2}+R^{2}-r^{2}\right)^{2}=4 R^{2}\left(x^{2}+y^{2}\right) .
$$

Solution. The surface is a torus with a parametrization

$$
\begin{aligned}
& x(\varphi, \phi)=(R+r \cos \phi) \cos \varphi, \\
& y(\varphi, \phi)=(R+r \cos \phi) \sin \varphi, \\
& z(\varphi, \phi)=r \sin \phi,
\end{aligned}
$$

$\varphi \in[0,2 \pi), \phi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Hence,

$$
\begin{aligned}
& \left(x^{2}+y^{2}+z^{2}+R^{2}-r^{2}\right)^{2}= \\
& =\left((R+r \cos \phi)^{2} \cos ^{2} \varphi+(R+r \cos \phi)^{2} \sin ^{2} \varphi+r^{2} \sin ^{2} \phi+R^{2}-r^{2}\right)^{2} \\
& =\left((R+r \cos \phi)^{2}+r^{2} \sin ^{2} \phi+R^{2}-r^{2}\right)^{2} \\
& =\left(R^{2}+2 R r \cos \phi+r^{2} \cos ^{2} \phi+r^{2} \sin ^{2} \phi+R^{2}-r^{2}\right)^{2} \\
& =\left(2 R^{2}+2 R r \cos \phi\right)^{2}=4 R^{2}(R+r \cos \phi)^{2}=4 R^{2}\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

2. Given are points $(0,4),(1,4),(2,2),(3,6)$. We would like to approximate the points in terms of the least squares error method with the function of the form

$$
g(x)=C(x-2)+D(x-2)^{2}
$$

(a) [2] Write down the linear system for unknowns C, D.

Solution.

$$
A\binom{C}{D}=\left(\begin{array}{ll}
(0-2) & (0-2)^{2} \\
(1-2) & (1-2)^{2} \\
(2-2) & (2-2)^{2} \\
(3-2) & (3-2)^{2}
\end{array}\right)\binom{C}{D}=\left(\begin{array}{cc}
-2 & 4 \\
-1 & 1 \\
0 & 0 \\
1 & 1
\end{array}\right)\binom{C}{D}=\left(\begin{array}{l}
4 \\
4 \\
2 \\
6
\end{array}\right) .
$$

(b) [8] Compute the Moore-Penrose inverse A^{+}of the matrix A of this system.

Solution.

$$
\begin{gathered}
\operatorname{det}\left(A^{T} A-\lambda I\right)=\operatorname{det}\left(\begin{array}{cc}
6-\lambda & -8 \\
-8 & 18-\lambda
\end{array}\right)=\lambda^{2}-24 \lambda+44=(\lambda-2)(\lambda-22) \\
\operatorname{ker}\left(A^{T} A-2 I\right)=\operatorname{ker}\left(\begin{array}{cc}
4 & -8 \\
-8 & 16
\end{array}\right)=\operatorname{ker}\left(\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right)=\operatorname{Lin}\left\{\binom{2}{1}\right\} \\
\operatorname{ker}\left(A^{T} A-22 I\right)=\operatorname{ker}\left(\begin{array}{cc}
-16 & -8 \\
-8 & -4
\end{array}\right)=\operatorname{ker}\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right)=\operatorname{Lin}\left\{\binom{1}{-2}\right\}
\end{gathered}
$$

Hence, $\sigma_{1}=\sqrt{22}, \sigma_{2}=\sqrt{2}, v_{1}=\frac{1}{\sqrt{5}}\binom{1}{-2} v_{2}=\frac{1}{\sqrt{5}}\binom{2}{1}$ and

$$
u_{1}=\frac{A v_{1}}{\sigma_{1}}=\frac{1}{\sqrt{110}}\left(\begin{array}{c}
-10 \\
-3 \\
0 \\
-1
\end{array}\right), \quad u_{2}=\frac{A v_{2}}{\sigma_{1}}=\frac{1}{\sqrt{10}}\left(\begin{array}{c}
0 \\
-1 \\
0 \\
3
\end{array}\right)
$$

Finally,

$$
\begin{aligned}
A^{+}=\sigma_{1}^{-1} v_{1} u_{1}^{T}+\sigma_{2}^{-1} v_{2} u_{2}^{T} & =\frac{1}{110}\left(\begin{array}{cccc}
-10 & -3 & 0 & -1 \\
20 & 6 & 0 & 2
\end{array}\right)+\frac{1}{10}\left(\begin{array}{llll}
0 & -2 & 0 & 6 \\
0 & -1 & 0 & 3
\end{array}\right) \\
& =\left(\begin{array}{cccc}
-\frac{1}{11} & -\frac{5}{22} & 0 & \frac{13}{22} \\
\frac{2}{11} & -\frac{1}{22} & 0 & \frac{7}{22}
\end{array}\right)
\end{aligned}
$$

(c) [2] Solve the system using A^{+}.

Solution.

$$
\binom{C}{D}=A^{+} b=\binom{\frac{25}{11}}{\frac{27}{11}} .
$$

3. Let

$$
\mathbf{r}(t)=\left(t^{5}-4 t^{3}, t^{2}\right)
$$

be a curve \mathcal{C} in \mathbb{R}^{3}.
(a) [8] Sketch the curve (determine intersections with both axes, self-intersections, horizontal and vertical tangents).

Solution.

We have:
i. $\lim _{t \rightarrow-\infty} \mathbf{r}(t)=\binom{-\infty}{\infty}, \quad \lim _{t \rightarrow \infty} \mathbf{r}(t)=\binom{\infty}{\infty}$.
ii. $\mathbf{r}\left(t_{1}\right)=\mathbf{r}\left(t_{2}\right) \Leftrightarrow\binom{t_{1}^{5}-4 t_{1}^{3}}{t_{1}^{2}}=\binom{t_{2}^{5}-4 t_{2}^{3}}{t_{2}^{2}}$. From $t_{1}^{2}=t_{2}^{2}$ it follows that $t_{2}=-t_{1}\left(t_{1}=t_{2}\right.$ is clearly not interesting). Then $t_{1}^{5}-4 t_{1}^{3}=\left(-t_{1}\right)^{5}-$ $4\left(-t_{1}\right)^{3} \Leftrightarrow 2\left(t_{1}^{5}-4 t_{1}^{3}\right)=0 \Leftrightarrow t_{1} \in\{0,2,-2\}$. So $(0,4)$ is a self-intersection (for $t_{1}=2, t_{2}=-2$).
iii. $x(t)=0 \Leftrightarrow t^{5}-4 t^{3}=0 \Leftrightarrow t^{3}\left(t^{2}-4\right)=0 \Leftrightarrow t \in\{0,-2,2\}$. So intersections with the y axis are $(0,4),(0,0)$.
iv. $y(t)=0 \Leftrightarrow t^{2}=0 \Leftrightarrow t=0$. So the intersection with the x axis is $(0,0)$.
v. $x^{\prime}(t)=0 \Leftrightarrow 5 t^{4}-12 t^{2}=0 \Leftrightarrow t^{2}\left(5 t^{2}-12\right)=0 \Leftrightarrow t \in\left\{0, \frac{2 \sqrt{3}}{5},-\frac{2 \sqrt{3}}{5}\right\}$. So candidates for vertical tangents are $(0,0),\left(-1.17, \frac{12}{25}\right),\left(1.17, \frac{12}{25}\right)$.
vi. $y^{\prime}(t)=0 \Leftrightarrow 2 t=0 \Leftrightarrow t=0$. So the candidate for the horizontal tangent is in the point $(0,0)$.
vii. In the points $\left(-1.17, \frac{12}{25}\right),\left(1.17, \frac{12}{25}\right)$ there is really a vertical tangent, since those points are not singularities. The point $(0,0)$ is a singularity and hence there is no tangent.
(b) [5] The curve \mathcal{C} has one loop. Compute the area of the region inside the loop.

Hint: When using the area formula determined by $\mathbf{r}(t)$ be careful on the sign change of the integrand.

Solution.
The area A inside the loop is the area $\mathbf{r}(t)$ describes for $t \in[-2,2]$:

$$
\begin{aligned}
A & =\frac{1}{2} \int_{-2}^{2}\left|x(t) y^{\prime}(t)-x^{\prime}(t) y(t)\right| d t=\frac{1}{2} \int_{-2}^{2}\left|2\left(t^{5}-4 t^{3}\right) t-\left(5 t^{4}-12 t^{2}\right) t^{2}\right| d t \\
& =\frac{1}{2} \int_{-2}^{2} t^{4}\left|-4+3 t^{2}\right| d t=\int_{0}^{2} t^{4}\left|-4+3 t^{2}\right| d t \\
& =-\int_{0}^{\frac{2}{\sqrt{3}}} t^{4}\left(-4+3 t^{2}\right) d t+\int_{\frac{2}{\sqrt{3}}}^{2} t^{4}\left(-4+3 t^{2}\right) d t \\
& =-\left[-\frac{4}{5} t^{5}+\frac{3}{7} t^{7}\right]_{0}^{2 / \sqrt{3}}+\left[-\frac{4}{5} t^{5}+\frac{3}{7} t^{7}\right]_{2 / \sqrt{3}}^{2} \approx 30.2
\end{aligned}
$$

4. Let

$$
y^{\prime \prime}-y^{\prime} y^{2}+y=0, y(0)=1, y^{\prime}(0)=0
$$

be a second order differential equation (DE).
(a) [3] Translate the DE into a system of first order DEs.

Solution. We introduce new variables $y_{1}=y, y_{2}=y^{\prime}$. Hence, $y_{2}^{\prime}-y_{1}^{\prime} y_{1}^{2}+y_{1}=0$ and the system becomes

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\binom{y_{2}}{y_{2} y_{1}^{2}-y_{1}}=:\binom{f_{1}\left(x, y_{1}, y_{2}\right)}{f_{2}\left(x, y_{1}, y_{2}\right)}, \quad\binom{y_{1}(0)}{y_{2}(0)}=\binom{1}{0} .
$$

(b) [10] Use the Runge-Kutta method with a Butcher tableau

0	0	
1	1	0
	$\frac{1}{2}$	$\frac{1}{2}$

and a step size $h=0.2$ to estimate $y(0.2)$.

Solution. The RK method is

$$
\begin{aligned}
\vec{y}(x+h) & =\vec{y}(x)+\frac{1}{2}\left(\vec{k}_{1}+\vec{k}_{2}\right), \\
\vec{k}_{1} & =h \vec{f}(x, \vec{y}(x)), \\
\vec{k}_{2} & =h \vec{f}\left(x+h, \vec{y}(x)+\vec{k}_{1}\right) .
\end{aligned}
$$

So

$$
\vec{y}(0.2)=\binom{y_{1}(0.2)}{y_{2}(0.2)}=\binom{y_{1}(0)}{y_{2}(0)}+\frac{1}{2}\left(0.2 \vec{f}(0, \vec{y}(0))+0.2 \vec{f}\left(0.2, \vec{y}(0)+\vec{k}_{1}\right)\right) .
$$

Further on,

$$
\begin{aligned}
\vec{k}_{1} & =0.2 \vec{f}(0, \vec{y}(0))=0.2\binom{f_{1}(0,1,0)}{f_{2}(0,1,0)}=0.2\binom{0}{-1}=\binom{0}{-0.2}, \\
\vec{k}_{2} & =0.2 \vec{f}\left(0.2, \vec{y}(0)+\vec{k}_{1}\right)=0.2 \vec{f}\left(0.2,\binom{1}{-0.2}\right)=0.2\binom{f_{1}(0.2,1,-0.2)}{f_{2}(0.2,1,-0.2)} \\
& =0.2\binom{-0.2}{-0.2-1}=\binom{-0.04}{-0.24}, \\
\vec{y}(0.2) & =\binom{1}{0}+\frac{1}{2}\left(\binom{0}{-0.2}+\binom{-0.04}{-0.24}\right)=\binom{0.98}{-0.22} .
\end{aligned}
$$

So, $y(0.2) \approx 0.98$.

