Mathematical Modelling Exam

June 5th, 2024
You have 90 minutes to solve the problems. The numbers in [•] represent points.

1. Answer the following questions. In YES/NO questions verify your reasoning.
(a) [2] Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^{m}$ a vector. The orthogonal projection of b to the linear span of the columns of A is equal to $A A^{+} b$. YES/NO
(b) [2] Assume that the Gauss-Newton method used to solve an overdetermined system $f(x)=0$ converges to $\tilde{x} \in \mathbb{R}^{n}$ for some initial approximation $x^{(0)}$. Then \tilde{x} is a least squares error solution to the system. YES/NO
(c) [2] Let $\mathcal{C}=\{(x(t), y(t)): t \in \mathbb{R}\}$ be some curve in the $x y$-plane. Let \mathcal{S} be a surface obtained by revolving \mathcal{C} around x-axis for 360 degrees. Write down the parametrization of \mathcal{S}.
(d) [2] For every choice of the constants $c_{i} \in[0,1], a_{i j} \in[0, \infty)$ and $b_{i} \in[0,1]$, the Runge-Kutta method with a Butcher tableau

$$
\begin{array}{c|cccc}
0 & 0 & & & \\
c_{2} & a_{21} & 0 & & \\
c_{3} & a_{31} & a_{32} & 0 & \\
c_{4} & a_{41} & a_{42} & a_{43} & 0 \\
\hline & b_{1} & b_{2} & b_{3} & b_{4}
\end{array}
$$

for solving the differential equation $y^{\prime}(x)=f(x, y), y\left(x_{0}\right)=y_{0}$ will be of order 4 . YES/NO
(e) [2] Let

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}, \\
& \dot{x}_{2}=(*), \\
& \dot{x}_{3}=(*), \\
& \dot{x}_{4}=-3 x_{1}+x_{2}+4 x_{3}+5 x_{4},
\end{aligned}
$$

by a system of differential equations, which comes in a standard way from some higher order differential equation with one dependent variable. What are (*) and what was the original differential equation?
2. We are given points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)$. We would like to determine α and β, such that the function

$$
f(x)=\cos \alpha \cdot e^{\beta x}
$$

fits best to the points in the sense of least squares error.
(a) [3] Write down explicitly the nonlinear system we have to solve. Identify the variables.
(b) [4] Write one step of Gauss-Newton method for solving the problem. Determine the Jacobian matrix needed explicitly.
(c) [3] Compute $J^{T} J$ explicitly, where J is the Jacobian from the previous question and comment on the efficient way of computing J^{+}. You do not need to compute J^{+}explicitly.
3. Let

$$
x(t)=\sin ^{2} t, \quad y(t)=2 \cos t, \quad t \in \mathbb{R}
$$

be a curve.
(a) [7] Sketch the curve. Determine also all local extrema in x and y direction and all intersections with the axes.
(b) [8] Compute the length of the trace of the curve.

Hint: Use $\int \sqrt{u^{2}+1} d u=\frac{1}{2} \log \left(u+\sqrt{1+u^{2}}\right)+\frac{1}{2} u \sqrt{1+u^{2}}+C, C \in \mathbb{R}$.
4. Let $x^{2}-y^{2}=a y, a \in \mathbb{R}$, be a family of curves.
(a) [5] Plot a few members of the family.
(b) [5] Derive a differential equation determining orthogonal trajectories to the given family.
(c) [5] Solve the differential equation obtained.

