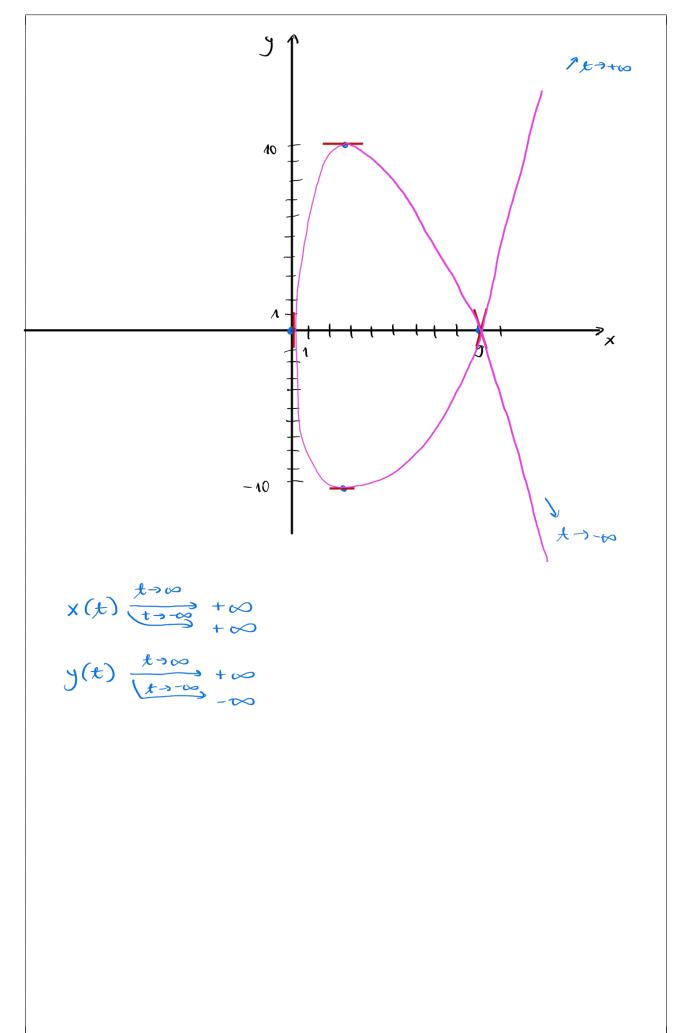

	Problem a.	Problem b.	Problem c.	Problem d.	Problem e.	Sum
Points						

Midterm EXAM in Mathematical Modelling April 9, 2025

For each of tasks justify all your answers.

Let the curve C be parametrized by function $\vec{F} \colon \mathbb{R} \to \mathbb{R}^2$, $\vec{F}(t) = \begin{bmatrix} t^2 \\ t^3 - 9t \end{bmatrix}$.

a. Prove that \mathcal{C} has a self-intersection.


b. Prove that the curve is symmetric over *x*-axis.

$$\vec{F}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, \text{ where } x(t) = t^2 \text{ is an even function} \\ (x(-t) = (-t)^2 = t^2 = x(t)) \end{bmatrix}$$

and $y(t) = t^3 - 9t$ is an odd function,
 $(y(-t) = (-t)^3 - 9(-t) = -(t^3 - 9t) = -y(t))$
and $p = \vec{F}(-t) = \begin{bmatrix} x(-t) \\ y(-t) \end{bmatrix} = \begin{bmatrix} x(t) \\ -y(t) \end{bmatrix}, \text{ which is}$
 $\vec{F}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, \text{ reflected over } x - axis$

c. Compute the following and write the results in the table:

There are no point in the case of the section of C with x-axis
(9,0), (0,0)
(1) thersections of C with y-axis
(0,0)
(2) points on C with horizontal tangents
(3,6,3), (3,-6,5)
(3) points on C with vertical tangents
(0,0)
(3) lopes of tangents on C in self-intersections
(3, -3)
(1)
$$y(t)=0(=>t^3-gt=0) =_5 t (t-3)(t+3)=0$$

 $t=0, t=3, t=-3$
 $T_3(9,0), T_6(0,0), T_3(9,0)$
(2) $x(t)=0 =_5 t^2=0 =_5 t=0$ $T_6(0,0)$
(3) $y'(t)=0 =_5 t=3, t=t\sqrt{5}$ (see part b.)
 $T_{\sqrt{3}}(3,6,6), T_{\sqrt{5}}(3,-6,6)$
(4) $x'(t)=0 =_5 t=0$ $(=>t=0)$ $T_6(0,0)$
(5) $y'(t)=0 =_5 t=0$ $(=>t=0)$ $T_6(0,0)$
(5) $y'(t)=0 =_5 t=0$ $(=>t=0)$ $T_6(0,0)$
(6) $x'(t)=0 =_5 t=0$ $(=>t=0)$ $T_6(0,0)$
(7) $T_{\sqrt{5}}(3,-6,6)$
(9) $x'(t)=0 =_5 t=0$ $(=>t=0)$ $T_6(0,0)$
(9) $x'(t)=0 =_5 t=0$ $(=>t=0)$ $T_6(0,0)$
(9) $x'(t)=0 =_5 t=0$ $(=>t=0)$ $T_6(0,0)$
(10) $T_{\sqrt{5}}(t)=0$ $T_{\sqrt{5}}(t)=0$

d. Sketch the curve C.

e. Compute the area of the loop of \mathcal{C} .