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Chapter 0:

What is Mathematical Modelling?
▶ Types of models

▶ Modelling cycle

▶ Numerical errors
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Introduction

Tha task of mathematical modelling is to find and evaluate solutions to real
world problems with the use of mathematical concepts and tools.

In this course we will introduce some (by far not all) mathematical tools
that are used in setting up and solving mathematical models.

We will (together) also solve specific problems, study examples and work on
projects.
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Contents

▶ Introduction

▶ Linear models: systems of linear equations, matrix inverses, SVD
decomposition, PCA

▶ Nonlinear models: vector functions, linear approximation, solving
systems of nonlinear equations

▶ Geometric models: curves and surfaces

▶ Dynamical models: differential equations, dynamical systems
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Modelling cycle

Real world problem Idealization

Simplification

Mathematical model

Generalization

Conclusions

Solution

Computer solution

ProgramSimulation

Explanation
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What should we pay attention to?

▶ Simplification: relevant assumptions of the model (distinguish
important features from irrelevant)

▶ Generalization: choice of mathematical representations and tools (for
example: how to represent an object - as a point, a geometric shape,
. . . )

▶ Solution: as simple as possible and well documented

▶ Conclusions: are the results within the expected range, do they
correspond to “facts” and experimental results?

A mathematical model is not universal, it is an approximation of the real
world that works only within a certain scale where the assumptions are at
least approximately realistic.
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Example

An object (ball) with mass m is thrown vertically into the air. What should
we pay attention to when modelling its motion?

▶ The assumptions of the model: relevant forces and parameters
(gravitation, friction, wind, . . . ), how to model the object (a point, a
homogeneous or nonhomogeneous geometric object, angle and rotation
in the initial thrust, . . . )

▶ Choice of the mathematical model: differential equation, discrete
model, . . .

▶ Computation: analytic or numeric, choice of method,. . .

▶ Do the results make sense?
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Errors

An important part of modelling is estimating the errors!

Errors are an integral part of every model.

Errors come from: assumptions of the model, imprecise data, mistakes in
the model, computational precision, errors in numerical and computational
methods, mistakes in the computations, mistakes in the programs, . . .

Absolute error = Approximate value - Correct value

∆x = x̄ − x

Relative error = Absolute error
Correct value

δx =
∆x

x
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Example: quadratic equation

x2 + 2a2x − q = 0

Analytic solutions are

x1 = −a2 −
√

a4 + q and x2 = −a2 +
√
a4 + q.

What happens if a2 = 10000, q = 1? Problem with stability in calculating
x2.

More stable way for computing x2 (so that we do not subtract numbers
which are nearly the same) is

x2 = −a2 +
√

a4 + q =
(−a2 +

√
a4 + q)(a2 +

√
a4 + q)

a2 +
√

a4 + q

=
q

a2 +
√

a4 + q
.
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Example of real life disasters

▶ Disasters caused because of numerical errors:
(http://www-users.math.umn.edu/~arnold//disasters/)

▶ The Patriot Missile failure, Dharan, Saudi Arabia, February 25
1991, 28 deaths: bad analysis of rounding errors.

▶ The explosiong of the Ariane 5 rocket, French Guiana, June 4,
1996: the consequence of overflow in the horizontal velocity.
https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=W3YJeoYgozw

https://www.arianespace.com/vehicle/ariane-5/

▶ The sinking of the Sleipner offshore platform, Stavanger, Norway,
August 12, 1991, billions of dollars of the loss: inaccurate finite
element analysis, i.e., the method for solving partial differential
equations.
https://www.youtube.com/watch?v=eGdiPs4THW8
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Chapter 1:

Linear model
▶ Definition

▶ Systems of linear equations

▶ The Moore-Penrose (MP) inverse

▶ Principal component analysis

▶ MP inverse and solving linear systems
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1. Linear mathematical models

Given points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R,

the task is to find a function F (x, a1, . . . , ap) that is a good fit for the data.

The values of the parameters a1, . . . , ap should be chosen so that the
equations

yi = F (xi , a1, . . . ap), i = 1, . . . ,m,

are satisfied or, if this is not possible, that the error is as small as possible.

Least squares method: the parameters are determined so that the sum of
squared errors

m∑
i=1

(F (xi , a1, . . . ap)− yi )
2

is as small as possible.
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The mathematical model is linear, when the function F is a linear function
of the parameters a1 . . . , ap:

F (x, a1, . . . , ap) = a1φ1(x) + a2φ2(x) + · · ·+ apφp(x),

where φ1, φ2, . . . φp : Rn → R are functions of a specific type in variable
x = (x1, . . . , xn) ∈ Rn.

Examples of linear models:

1. linear regression: x , y ∈ R, φ1(x) = 1, φ2(x) = x ,

2. multivariate linear regression:

φ1(x) = 1, φ2(x) = x1, φ3(x) = x2, . . . , φn+1(x) = xn,

3. polynomial regression: x , y ∈ R, φ1(x) = 1, . . . , φp(x) = xp−1,

4. frequency or spectral analysis:

φ1(x) = 1, φ2(x) = cosωx , φ3(x) = sinωx , φ4(x) = cos 2ωx , . . .

(there can be infinitely many functions φi (x) in this case)

Examples of nonlinear models: F (x , a, b) = aebx and F (x , a, b, c) =
a+ bx

c + x
.
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Given the data points {(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R, the
parameters of a linear model

y = a1φ1(x) + a2φ2(x) + · · ·+ apφp(x)

should satisfy the system of linear equations

yi = a1φ1(xi ) + a2φ2(xi ) + · · ·+ apφp(xi ), i = 1, . . . ,m,

In a matrix form, this is equivalent to
φ1(x1) φ2(x1) . . . φp(x1)
φ1(x2) φ2(x2) . . . φp(x2)
. . . . . . . . . . . .

φ1(xm) φ2(xm) . . . φp(xm)




a1
a1
...
ap

 =


y1
y1
...
ym

 ,

or
Φa⃗ = y⃗ ,

where a⃗ = [a1, . . . , ap]
T is a vector of unknowns (i.e. parameters of our

model).
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1.1 Systems of linear equations and generalized inverses

A system of linear equations in the matrix form is given by

Ax⃗ = b⃗,

where

▶ A is the matrix of coefficients of order m× n where m is the number of
equations and n is the number of unknowns,

▶ x⃗ is the vector of unknowns and

▶ b⃗ is the right side vector.
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Existence of solutions:

Let A = [a⃗1, . . . , a⃗n], where a⃗i are vectors representing the columns of A.

For any vector x⃗ =

 x1
...
xn

 the product Ax⃗ is a linear combination

Ax⃗ =
∑
i

xi a⃗i .

The system is solvable if and only if the vector b⃗ can be expressed as a
linear combination of the columns of A, that is, it is in the column space
C(A) of A, i.e., b ∈ C(A).
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By adding b to the columns of A we obtain the extended matrix of the
system

[A | b⃗] = [a⃗1, . . . , a⃗n | b⃗],

Theorem
The system Ax⃗ = b⃗ is solvable if and only if the rank of A equals the rank
of the extended matrix [A | b⃗], i.e.,

rank A = rank [A | b⃗] =: r .

The solution is unique if the rank of the two matrices equals the number of
unknowns, i.e., r = n.

A generic case is the following:

If A is a square matrix (n = m) that has an inverse matrix A−1, the system
has a unique solution

x⃗ = A−1b⃗.
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Let A ∈ Rn×n be a square matrix. The following conditions are equivalent
and characterize when a matrix A is invertible (or nonsingular):

▶ The matrix A has an inverse.

▶ The rank of A equals n, or A is of full rank.

▶ det(A) ̸= 0.

▶ The null space N(A) = {x⃗ : Ax⃗ = 0} is trivial.

▶ All eigenvalues of A are nonzero.

▶ For each b⃗ the system of equations Ax⃗ = b⃗ has precisely one solution.
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A square matrix that does not satisfy the above conditions does not have
an inverse.

Example

A =

 1 0 1
0 1 −1
1 1 1

 , B =

 1 0 1
0 1 −1
1 1 0


A is invertible and is of rank 3, B is not invertible and is of rank 2.

For a rectangular matrix A of dimension m × n, m ̸= n, its inverse is not
defined (at least in the above sense...).
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Theorem (Singular value decomposition - SVD)

Let A ∈ Rm×n be a matrix. Then it can be expressed as a product

A = UΣV T ,

where

▶ U ∈ Rn×n is an orthogonal matrix with left singular vectors u⃗i as its
columns,

▶ V ∈ Rm×m is an orthogonal matrix with right singular vectors v⃗i as its
columns,

▶ Σ =


σ1 0

. . .
...

σr 0

0 0

 =

[
S 0
0 0

]
∈ Rm×n is a diagonal matrix

with singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0

on the diagonal.
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Derivations for computing SVD

If A = UΣV T , then

ATA = (VΣTUT )(UΣV T ) = VΣTΣV T = V

[
S2 0
0 0

]
V T ∈ Rm×m,

AAT = (UΣV T )(UΣV T )T = UΣΣTUT = U

[
S2 0
0 0

]
UT ∈ Rn×n.

Let
V =

[
v⃗1 v⃗2 · · · v⃗m

]
and U =

[
u⃗1 u⃗2 · · · u⃗n

]
be the column decompositions of V and U.

Let e1, . . . , em ∈ Rm and f1, . . . , fn ∈ Rn be the standard coordinate vectors
of Rm and Rn, i.e., the only nonzero component of ei (resp. fj) is the i-th
one (resp. j-th one), which is 1. Then

ATAv⃗i = VΣTΣV T v⃗i = VΣTΣei =

{
σ2
i v⃗i , if i ≤ r ,
0, if i > r ,

AATuj = UΣΣTUTuj = UΣΣT fj =

{
σ2
i u⃗j , if j ≤ r ,
0, if j > r .
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Further on,

(AAT )(Av⃗i ) = A(ATA)v⃗i =

{
σ2
i Av⃗i , if i ≤ r ,

0, if i > r ,

(ATA)(ATuj) = AT (AAT )u⃗j =

{
σ2
j A

Tuj , if j ≤ r ,

0, if j > r .

It follows that:

▶ ΣTΣ =

[
S2 0
0 0

]
∈ Rm×m (resp. ΣΣT =

[
S2 0
0 0

]
∈ Rn×n) is the

diagonal matrix with eigenvalues σ2
i of ATA (resp. AAT ) on its

diagonal, so the singular values σi are their square roots.

▶ V has the corresponding eigenvectors (normalized and pairwise
orthogonal) of ATA as its columns, so the right singular vectors are
eigenvectors of ATA.

▶ U has the corresponding eigenvectors (normalized and pairwise
orthogonal) of AAT as its columns, so the left singular vectors are
eigenvectors of AAT .
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▶ Av⃗i is an eigenvector of AAT corresponding to σ2
i and so

u⃗i =
Av⃗i
∥Av⃗i∥

=
Av⃗i
σi

is a left singular vector corresponding to σi , where in the second
equality we used that

∥Av⃗i∥ =
√

(Av⃗i )T (Av⃗i ) =
√

v⃗T
i ATAv⃗i =

√
σ2
i v⃗

T
i v⃗i = σi∥v⃗i∥ = σi .

▶ AT u⃗j is an eigenvector of ATA corresponding to σ2
j and so

v⃗j =
AT u⃗j
∥AT u⃗j∥

=
AT u⃗j
σj

is a right singular vector corresponding to σj , where in the second
equality we used that

∥ATuj∥ =
√

(ATuj)T (ATuj) =
√

uT
j AA

Tuj =
√

σ2
j u⃗

T
j uj = σj∥uj∥ = σj .
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Algorithm for SVD computation

▶ Compute the eigenvalues and an orthonormal basis consisting of
eigenvectors of the symmetric matrix ATA or AAT (depending on
which is of them is of smaller size).

▶ The singular values of the matrix A ∈ Rm×n are equal to σi =
√
λi ,

where λi are the nonzero eigenvalues of ATA (resp. AAT ).

▶ The left singular vectors are the corresponding orthonormal
eigenvectors of AAT .

▶ The right singular vector are the corresponding orthonormal
eigenvectors of ATA.

▶ If u (resp. v) is a left (resp. right) singular vector corresponding to the
singular value σi , then v = ATu (resp. u = Av) is a right (resp. left)
singular vector corresponding to the same singular value.

▶ The remaining columns of U (resp. V ) consist of an orthonormal basis
of the kernel (i.e., the eigenspace of λ = 0) of AAT (resp. ATA).
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1.2 The Moore-Penrose generalized inverse

Definition
A generalized inverse of a matrix A ∈ Rm×n is a matrix G ∈ Rn×m such that

AGA = A. (1)

Generalized inverses of a matrix A play a similar role as the usual inverse
(when it exists) in solving a linear system Ax⃗ = b⃗.

Among all generalized inverses of a matrix A, one has especially nice
properties.
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Definition
The Moore-Penrose generalized inverse, or shortly the MP inverse of
A ∈ Rm×n is any matrix A+ ∈ Rn×m satifying the following four conditions:

1. A+ is a generalized inverse of A: AA+A = A.

2. A is a generalized inverse of A+: A+AA+ = A+.

3. The square matrix AA+ ∈ Rm×m is symmetric: (AA+)T = AA+.

4. The square matrix A+A ∈ Rn×n is symmetric: (A+A)T = A+A.

Remark
There are two natural questions arising after defining the MP inverse:

▶ Does every matrix admit a MP inverse? Yes.

▶ Is the MP inverse unique? Yes.
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Theorem
The MP inverse A+ of a matrix A is unique.

Proof.
Assume that there are two matrices M1 and M2 that satisfy the four
conditions in the definition of MP inverse of A. Then,

AM1 = (AM2A)M1 by property (1)
= (AM2)(AM1) = (AM2)

T (AM1)
T by property (3)

= MT
2 (AM1A)

T = MT
2 AT by property (1)

= (AM2)
T = AM2 by property (3)

A similar argument involving properties (2) and (4) shows that

M1A = M2A,

and so
M1 = M1AM1 = M1AM2 = M2AM2 = M2.
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Remark
Let us assume that A+ exists (we will shortly prove this fact). Then the
following properties are true:

▶ If A is a square invertible matrix, then it A+ = A−1.

▶ (A+)+ = A.

▶ (AT )+ = (A+)T .

In the rest of this chapter we will be interested in two obvious questions:

▶ How do we compute A+?

▶ Why would we want to compute A+?

To answer the first question, we will begin by three special cases.
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Construction of the MP inverse of A ∈ Rm×n:

Case 1: ATA ∈ Rm×m is an invertible matrix. (In particular, n ≤ m.)

In this case A+ = (ATA)−1AT .

To see this, we have to show that the matrix (ATA)−1AT satisfies
properties (1) to (4):

1. AMA = A(ATA)−1ATA = A(ATA)−1(ATA) = A.

2. MAM = (ATA)−1ATA(ATA)−1AT = (ATA)−1AT = M.

3.

(AM)T =
(
A(ATA)−1AT

)T
= A

((
ATA

)−1
)T

AT =

= A

((
ATA

)T
)−1

AT = A(ATA)−1AT = AM.

4. Analoguous to the previous fact.
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Case 2: AAT ∈ Rm×m is an invertible matrix. (In particular, m ≤ n.)

In this case AT satisfies the condition for Case 1, so (AT )+ = (AAT )−1A.

Since (AT )+ = (A+)T it follows that

A+ =
(
(A+)T

)T
=

(
(AAT )−1A

)T
= AT

(
(AAT )−1

)T

= AT
(
(AAT )−T

)−1
= AT (AAT )−1.

Hence, A+ = AT (AAT )−1.
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Case 3: A = Σ ∈ Rm×n is a diagonal matrix of the form

Σ =


σ1

σ2
. . .

σm

 or Σ̃ =



σ1
σ2

. . .

σn


.

The MP inverse is

Σ+ =



σ+
1

σ+
2

. . .

σ+
m


or Σ̃+ =


σ+
1

σ+
2

. . .

σ+
n

 ,

where σ+
i =

{ 1
σi
, σi ̸= 0,

0, σi = 0.
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Case 4: A general matrix A. (using SVD)

1. For ATA compute its eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > λr+1 = . . . = λm = 0

and the corresponding orthonormal eigenvectors

v⃗1, . . . , v⃗r , v⃗r+1, . . . , v⃗m,

and form the matrices

Σ = diag(
√

λ1, . . . ,
√

λm) ∈ Rm×n,

V1 =
[
v⃗1 · · · v⃗r

]
, V2 =

[
v⃗r+1 · · · v⃗m

]
and V =

[
V1 V2

]
.

2. Let

u⃗1 =
Av⃗1
σ1

, u⃗2 =
Av⃗2
σ2

, . . . , ur =
Av⃗r
σr

,

and u⃗r+1, . . . , u⃗n vectors, such that {u1, . . . , un} is an orthonormal
basis for Rn. Form the matrices

U1 =
[
u⃗1 · · · u⃗r

]
, U2 =

[
u⃗r+1 · · · u⃗n

]
and U =

[
U1 U2

]
.

3. Then
A+ = VΣ+UT .

Remark
Note that the eigenvectors v⃗r+1, . . . , v⃗n corresponding to the eigenvalue 0
of ATA do not need to be computed.
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General algorithm for computation of A+ (short version)

1. For ATA compute its nonzero eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > 0

and the corresponding orthonormal eigenvectors

v⃗1, . . . , v⃗r ,

and form the matrices

S = diag(
√

λ1, . . . ,
√
λr ) ∈ Rr×r ,

V1 =
[
v⃗1 · · · v⃗r

]
∈ Rm×r .

2. Put the vectors

u1 =
Av⃗1
σ1

, u⃗2 =
Av⃗2
σ2

, . . . , ur =
Av⃗r
σr

in the matrix
U1 =

[
u⃗1 · · · u⃗r

]
.

3. Then
A+ = V1Σ

+UT
1 .
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Correctness of the computation of A+

Step 1. VΣ+UT is equal to A+.

(i) AA+A = A:

AA+A = (UΣV T )(VΣ+UT )(UΣV T ) = UΣ(V TV )Σ+(UTU)ΣV T

= UΣΣ+ΣV T = UΣV T = A.

(ii) A+AA+ = A+: Analoguous to (i).

(iii) (AA+)T = AA+:

(AA+)T =
(
(UΣV T )(VΣ+UT )

)T
=

(
UΣΣ+UT

)T

=

(
U

[
Ir 0
0 0

]
UT

)T

= U

[
Ir 0
0 0

]
UT

= (UΣV T )(VΣ+UT ) = A+.

(iv) (A+A)T = A+A: Analoguous to (iii).
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Step 2. VΣ+UT is equal to V1Σ
+UT

1 .

VΣUT =
[
V1 V2

] [S 0
0 0

] [
UT
1

UT
2

]
=

[
V1S 0

] [UT
1

UT
2

]
= V1SU

T
1 .

Example

Compute the SVD and A+ of the matrix A =

[
3 2 2
2 3 −2

]
.

▶ AAT =

[
17 8
8 17

]
has eigenvalues 25 and 9.

▶ The eigenvectors of AAT corresponding to the eigenvalues 25, 9 are

u1 =
[

1√
2

1√
2

]T
, u2 =

[
1√
2

− 1√
2

]T
.

▶ The left singular vectors of A are

v⃗1 =
ATu1
σ1

=
[

1√
2

1√
2

0
]T

, v⃗2 =
ATu2
σ2

=
[

1

3
√
2

− 1

3
√
2

4

3
√
2

]T
.

v⃗3 = v⃗1 × v⃗2 =
[

2√
3

− 2
3

− 1
3

]T
.
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▶

A = UΣV T =

 1√
2

1√
2

1√
2

− 1√
2

5 0 0

0 3 0




1√
2

1√
2

0

1

3
√
2

− 1

3
√
2

4

3
√

2

2√
3

− 2
3

− 1
3

 .

▶

A+ = VΣ+UT =


1√
2

1

3
√
2

2√
3

1√
2

− 1

3
√
2

− 2
3

0 4

3
√
2

− 1
3




1
5

0

0 1
3

0 0


 1√

2

1√
2

1√
2

− 1√
2



=


7
45

2
45

2
45

7
45

2
9

− 2
9

 .
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1.3 The MP inverse and systems of linear equations
Let A ∈ Rm×n, where m < n. A system of equations Ax⃗ = b⃗ that has more
variables than constraints. Typically such system has infinitely many
solutions, but it may happen that it has no solutions. We call such system
an underdetermined system.

Theorem

1. An underdetermined system of linear equations

Ax⃗ = b⃗ (2)

is solvable if and only if AA+b⃗ = b⃗.

2. If there are infinitely many solutions, the solution A+b⃗ is the one with
the smallest norm, i.e.,

∥A+b⃗∥ = min
{
∥x⃗∥ : Ax⃗ = b⃗

}
.

Moreover, it is the unique solution of smallest norm.
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Proof of Theorem.

1. (⇒) If Ax⃗0 = b⃗, then b⃗ = Ax⃗0 = AA+Ax⃗0 = AATb⃗.
(⇐) If AA+b⃗ = b⃗, then clearly Ax⃗ = b⃗ has solution x⃗ = A+b⃗.

2. Assume x⃗ = A+b⃗ is a solution of Ax⃗ = b⃗, i.e. Ax⃗ = b⃗ is solvable. First
prove that

S = {A+b⃗ + (A+A− I )z⃗ : z⃗ ∈ Rm}

is the set of all solutions of Ax⃗ = b⃗. Note that
(A+A− I )z⃗ = C (A+A− I ) = N(A).

▶ If x⃗ ∈ S, then x⃗ = A+b⃗ + (A+A− I )z⃗ for some z⃗ ∈ Rn. Then

A(x⃗) = A(A+b⃗ + (A+A− I )z⃗)) =

= AA+b⃗ + AA+Az⃗ − Az⃗ = b⃗.

▶ Every x⃗ that solves Ax⃗ = b⃗ can be written as

x⃗ = x⃗ − A+Ax⃗ + A+Ax⃗ = (A+A− I )(−x⃗) + A+b⃗,

and so x⃗ ∈ S.
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Now have to prove that for every z⃗ ∈ Rm, we have

∥A+b⃗∥ ≤ ∥A+b⃗ + (A+A− I )z⃗∥.

Simplify:

∥A+b⃗ + (A+A− I )z⃗∥2 =
(
A+b⃗ + (A+A− I )z⃗

)T (
A+b⃗ + (A+A− I )z⃗

)
= ∥A+b⃗∥2 + 2

(
A+b⃗

)T
(A+A− I )z⃗ + ∥(A+A− I )z⃗∥2

and observe that(
A+b⃗

)T
(A+A− I )z⃗ = bT (A+)T (A+A− I )z⃗

= bT (A+)T (A+A)T z⃗ − bT (A+)T z⃗

= bT
(
A+AA+

)T
z⃗ − bT (A+)T z⃗

= bT (A+)T z⃗ − bT (A+)T z⃗ = 0⃗.

Thus, ∥A+b⃗ + (A+A− I )z⃗∥2 = ∥A+b⃗∥2 + ∥(A+A− I )z⃗∥2 ≥ ∥A+b⃗∥2, with
the equality iff (A+A− I )z⃗ = 0⃗.
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Example

▶ The solutions of the underdetermined system x + y = 1 geometrically
represent an affine line. Matricially, A =

[
1 1

]
, b = 1. Hence,

A+b⃗ = A+1 is the point on the line, which is the nearest to the origin.
Thus, the vector of this point is perpendicular to the line.

▶ The solutions of the underdetermined system x + 2y + 3z = 5
geometrically represent an affine hyperplane. Matricially,
A =

[
1 2 3

]
, b = 5. Hence, A+b⃗ = A+5 is the point on the

hyperplane, which is the nearest to the origin. Thus, the vector of this
point is normal to the hyperplane.

▶ The solutions of the underdetermined system x + y + z = 1 and
x + 2y + 3z = 5 geometrically represent an affine line in R3.

Matricially, A =

[
1 1 1
1 2 3

]
, b =

[
1
5

]
. Hence, A+b⃗ is the point on the

line, which is the nearest to the origin. Thus, the vector of this point is
perpendicular to the line.
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Example

Find the point on the plane 3x + y + z = 2 closest to the origin.

▶ In this case,
A =

[
3 1 1

]
and b = [2].

▶ We have that AAT = [11] and hence its only eigenvalue is λ = 11 with eigenvector
u = [1], implying that

U = [1] and Σ =
[ √

11 0 0
]
.

▶ Hence,

v⃗1 =
AT u⃗

∥AT u⃗∥ =
AT u⃗

σ1
=

1√
11

[
3 1 1

]T
.

▶

A+ = VΣ+UT =
1√
11

 3
1
1

 1√
11

[1] =


3
11

1
11

1
11

 .

▶
A+b =

[
6
11

2
11

2
11

]T
.
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Overdetermined systems

Let A ∈ Rm×n, where m ≥ n. This system is called overdetermined, since
here are more constraints than variables. Such a system typically has no
solutions, but it might have one or even infinitely many solutions.

Least squares approximation problem: if the system Ax⃗ = b⃗ has no
solutions, then the best fit for the solution is a vector x⃗ such that the error
||Ax⃗ − b⃗|| or, equivalently in the row decomposition

A =

α1
...

αm

 ,

its square

||Ax⃗ − b⃗||2 =
m∑
i=1

(αix − bi )
2,

is the smallest possible.
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Theorem
If the system Ax⃗ = b⃗ has no solutions, then

x⃗+ = A+b⃗

is the solution to the least squares approximation problem:

min{∥Ax⃗ − b⃗∥ : x⃗ ∈ Rm}. (3)

Moreover, if rankA = n, then (3) has a unique solution. If rankA < n, then
x⃗+ has the smallest second norm ∥x+∥2 among all solution to (3).

Proof.
Let A = UΣV T be the SVD of A. We have that

∥Ax⃗ − b⃗∥ = ∥UΣV T x⃗ − b⃗∥ = ∥ΣV T x⃗ − UT b⃗∥,

where we used that
∥UT v⃗∥ = ∥v⃗∥

in the second equality (which holds since UT is an orthogonal matrix).
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Let

Σ =

[
S 0
0 0

]
, U =

[
U1 U2

]
, V =

[
V1 V2

]
, where

S ∈ Rr×r , U1 ∈ Rn×r ,U2 ∈ Rn×(n−r), V1 ∈ Rm×r , V2 ∈ Rm×(m−r). Thus,

∥ΣV T x⃗ − UT b⃗∥ =

∥∥∥∥[S 0
0 0

] [
V T
1

V T
2

]
x⃗ −

[
UT
1

UT
2

]
b⃗

∥∥∥∥
=

∥∥∥∥∥
[
SV T

1 x⃗ − UT
1 b⃗

UT
2 b⃗

]∥∥∥∥∥ .
But this norm is minimal iff

SV T
1 x⃗ − UT

1 b⃗ = 0

or equivalently
V T
1 x⃗ = S−1UT

1 b⃗. (4)

Further on,

V TV =

[
V T
1 V1 V T

1 V2

V T
2 V1 V T

2 V2

]
= In,

implies that V T
1 V1 = Ir and V T

2 V1 = 0, where Ik stands for the k × k
identity matrix.
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If rankA = m, then V1 ∈ Rm×m is invertible with the inverse V T
1 and

hence,
V1S

−1UT
1 b⃗ = A+b⃗

is the unique solution to (3).
If r = rankA < m, then all x which solve (4) are of the form A+b⃗ + z⃗ , for
z⃗ ∈ kerV T

1 . Since kerV T
1 = imV2 and V T

2 V1 = 0, it follows that the norm

of A+b⃗ + z⃗ is minimal for z⃗ = 0⃗.

Remark
The closest vector to b in the column space C (A) = {Ax⃗ : x⃗ ∈ Rm} of A is
the orthogonal projection of b onto C (A). It follows that A+b⃗ is this
projection. Equivalently, b − (A+b⃗) is orthogonal to any vector Ax⃗,
x⃗ ∈ Rm, which can be proved also directly.
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Example

Given points {(x1, y1), . . . , (xn, yn)} in the plane, we are looking for the line
ax + b = y which is the least squares best fit.

If n > 2, we obtain an overdetermined system x1 1
...
xn 1

[
a
b

]
=

 y1
...
yn

 .

The solution of the least squares approximation problem is given by

[
a
b

]
= A+

 y1
...
ym

.

The line y = ax + b in the regression line.
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Vector norm is a map ∥·∥ : Rn → R, which satisfies:

1. Positive definiteness: ∥x⃗∥ ≥ 0 for every x⃗ ∈ Rn and ∥x⃗∥ = 0 ⇔ x⃗ = 0.

2. Homogeneity: ∥αx⃗∥ = |α| ∥x⃗∥ for every α ∈ R and x⃗ ∈ Rn

3. Triangle inequality: ∥x⃗ + y∥ ≤ ∥x⃗∥+ ∥y⃗∥ for every x , y ∈ Rn.

Example

Let x⃗ = [x1, . . . , xn]
T ∈ Rn.

▶ p–norm for p ∈ N:

∥x⃗∥p := (|x1|p + . . .+ |xn|p)1/p .

▶ Supremum norm:

∥x⃗∥∞ = max(|x1|, . . . , |xn|).
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Unit spheres in various norms
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Matrix norm is a map ∥·∥ : Rn×n → R, which satisfies

1. Positive definiteness: ∥A∥ ≥ 0 for all A ∈ Rn×n and ∥A∥ = 0 ⇔ A = 0.

2. Homogeneity: ∥αA∥ = |α| ∥A∥ for all α ∈ R in A ∈ Rn×n.

3. Triangle inequality: ∥A+ B∥ ≤ ∥A∥+ ∥B∥ for all A,B ∈ Rn×n.

4. Submultiplicativity: ∥AB∥ ≤ ∥A∥ ∥B∥ for all A,B ∈ Rn×n.

Proposition

Let ∥ · ∥∗ be a vector norm on Rn. Then

∥A∥∗ := max
∥x⃗∥=1

∥Ax⃗∥∗ = max
x ̸=0

∥Ax⃗∥∗
∥x⃗∥∗

.

defines a matrix norm on Cn×n.

Proof: click
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Let A = [aij ]i ,j=1,...,n ∈ Rn×n be a matrix. Some matrix norms are the
following:

1. 1–norm:

∥A∥1 = max
j=1,...,n

( n∑
i=1

|aij |
)
. Proof: klik

2. Spectral norm: Here λj(X ) stands for the j–th eigenvalue of X .

∥A∥2 =
√

max
j=1,...,n

λj(ATA).

3. Frobenius norm:

∥A∥F =

√√√√ n∑
i ,j=1

|aij |2.

4. Supremum norm:

∥A∥∞ = max
i=1,...,n

( n∑
j=1

|aij |
)
.
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1.4 Principal component analysis (PCA)

▶ SVD is an essential tool for the PCA, which is a very well-known and
efficient method for data compression, dimension reduction, . . .

▶ Due to its importance in different fields, it has many other names: discrete

Karhunen-Loève transform (KLT), Hotelling transform, empirical orthogonal

functions (EOF), . . .

▶ Suppose we are given n data points X1, . . . ,Xn ∈ Rd , viewed as rows
of a n × d matrix X . Each entry xi ,j of

Xi = (xi ,1, xi ,2, . . . , xi ,d)

represents the value of some feature of Xi , i.e., if Xi represents a
person, then xi ,j ’s can represent his/her year of birth, the height, blood
sugar level, blood presure, etc. The columns C1, . . . ,Cd of X are also
called feature vectors.
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▶ Basic idea of PCA: Determine the vectors Y (1), . . . ,Y (d) ∈ Rn,
called principal components (PCs), which are uncorrelated
projections of centered data points X1, . . . ,Xn onto some unit vectors
v (1), . . . , v (d) ∈ Rd such that the variances Var(Y (1)), . . . ,Var(Y (d))
are maximized.

▶ Algorithm for the computation of PCs of X :

1. Centralization of data:
For each column Cj compute its mean value

µj :=
1

n

n∑
i=1

xi,j =
1

n
(x1,j + x2,j + . . .+ xn,j)

and subtract the centroid

µ := (µ1, µ2, . . . , µd)

from each row of X :

X − 1n,d diag(µ) = [xi,j − µj ]i,j ,

where 1n,d stands for the n × d matrix with all entries equal to 1 and
diag(µ) is a diagonal matrix with j-th diagonal entry µj .
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2. Computation of the singular value decomposition (SVD) of
X − 1n,d diag(µ):
Let

X − 1n,d diag(µ) = UDV T

be the SVD of X − 1n,d diag(µ), where U ∈ Rn×n, V ∈ Rd×d are
orthogonal matrices and D ∈ Rn×d is a diagonal matrix with the
singular values

σ1 ≥ σ2 ≥ . . . σd ≥ 0

in decreasing order on the main diagonal.

3. Computation of the PCs of X :
The PCs of X are points Y (1), . . . ,Y (d) ∈ Rn obtained by

Y (k) = (X − 1n,d diag(µ))v
(k) = σku

(k), k = 1, . . . , d ,

where v (k) and u(k) are the k–th columns of V and U, respectively.
The vectors v (k) and u(k) are called right (resp. left) principal
directions.
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PCA provides a linear dimension reduction method based on a projection of
the data from the space Rn into a lower dimensional subspace spanned by
the first few principal vectors v⃗1, . . . , v⃗k in Rn.

The idea is to approximate

Xi = σ1u1,i v⃗1 + · · ·+ σmum,i v⃗m ∼= σ1u1,i v⃗1 + · · ·+ σkuk,i v⃗k

with the first k most informative directions in Rn and supress the last
m − k .

PCA has the following amazing property:

Theorem (Eckart-Young)

Among all possible projections of p : Rn → Rk onto a k-dimensional
subspace, PCA provides the best in the sense that the errors

∥X − p(X )∥2F and ∥X − p(X )∥22,

where p(X ) =
[
p(X1) · · · p(Xm)

]T
, are the smallest possible.
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Chapter 2:

Nonlinear models
▶ Definition and examples

▶ Systems of nonlinear equations
▶ Vector functions of vector variables

▶ Derivative and Jacobian matrix
▶ Linear approximation

▶ Newton’s method for square systems
▶ Univariate case: Tangent method
▶ Use in optimization

▶ Gauss-Newton’s method for rectangular systems
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3. Nonlinear models
General formulation

Given is a sample of points {(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R.

The mathematical model is nonlinear if the function

y = F (x, a1, . . . , ap) (5)

is a nonlinear function of the parameters ai . This means it cannot be
written in the form

y = a1f1(x) + a2f2(x) + . . .+ apfp(x),

where each fi : Rn → R is some function.

Plugging each data points into (5) we obtain a system of nonlinear
equations

y1 = F (x1, a1, . . . , ap),

...

ym = F (xm, a1, . . . , ap),

(6)

in the parameters a1, . . . , ap ∈ R.
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Examples

1. Exponential decay or growth: F (x , a, k) = aekx , a and k are
parameters.

A quantity y changes at a rate proportional to its current value, which
can be described by the differential equation

dy

dx
= ky .

The solution to this equation (obtained by the use of separation of
variables) is y = F (x , a, k).
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Examples

2. Gaussian model: F (x , a, b, c) = ae−(
x−b
c )

2

, a, b, c ∈ R parameters.

a is the value of the maximum obtained at x = b and c determines the
width of the curve.

It is used in statistics to describe the normal distribution, but also in
signal and image processing.

In statistics a = 1
σ
√
2π
, b = µ, c =

√
2σ, where µ, σ are the expected

value and the standard deviation of a normally distributed random
variable.
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Examples

3. Logistic model: F (x , a, b, k) = a
(1+be−kx )

, k > 0

The logistic function was devised as a model of population size by
adjusting the exponential model which also considers the saturation of
the environment, hence the growth first changes to linear and then
stops.

The logistic function F (x , a, b, k) is a solution of the first order
non-linear differential equation

dy(x)

dx
= ky(x)

(
1− y(x)

a

)
.
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Examples

4. In the area around a radiotelescope the use of microwave ovens is forbidden, since
the radiation interferes with the telescope. We are looking for the location (a, b) of
a microwave oven that is causing problems.

The radiation intensity decreases with the distance r from the source according to

u(r) =
α

1 + r
. In cartesian coordinates:

u(x , y) =
α

1 +
√

(x − a)2 + (y − b)2
,

where (a, b) is a position of the microwave.

Task: Find the position of the microwave, if the measured values of the signal at
three locations are u(0, 0) = 0.27, u(1, 1) = 0.36 in u(0, 2) = 0.3.

This gives the following system of equations for the parameters α, a, b:

α

1 +
√
a2 + b2

= 0.27

α

1 +
√

(1− a)2 + (1− b)2
= 0.36

α

1 +
√

a2 + (2− b)2
= 0.3
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An equivalent, more convenient formulation of the nonlinear system

▶ Our goal is to fit the data points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R.

▶ We choose a fitting function

F (x, a1, . . . , ap)

which depends on the unknown parameters a1, . . . , ap.
▶ Equivalent formulation of the system (6) ( which will be more suitable for solving with

numerical algorithms) is:
1. For i = 1, . . . ,m define the functions

gi : Rp → R by the rule gi (a1, . . . , ap) = yi − F (xi , a1, . . . , ap).

2. Solve or approximate the following system by the least squares method

g1(a1, . . . , ap) = 0,

...

gm(a1, . . . , ap) = 0.

(7)
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An equivalent, more convenient formulation of the nonlinear system - continued

In a compact way (7) can be expressed by introducing a vector function

G : Rp → Rm, G (a1, . . . , ap) = (g1(a1, . . . , ap), . . . , gm(a1 . . . , ap)), (8)

and search for the tuples (a1, . . . , ap) that solve the system (or minimize
the norm of the left-hand side)

G (a1, . . . , ap) = (0, . . . , 0). (9)

Remark
Solving (9) is a difficult problem. Even if the exact solution exists, it is not easy
(or even impossible) to compute. For example, there does not even exist an
analytic formula to determine roots of a general polynomial of degree 5 or more.

But we will learn some numerical algortihms to approximate the solutions
of (9).
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3.1 Vector functions of a vector variable
Neccessary terminology to achieve our plan

G from (8) is an example of

▶ a vector function: since it maps into Rm, where m might be bigger
than 1.

▶ a vector variable: since it maps from Rp, where p might be bigger than
1.

Remark

▶ If m = 1 and p > 1, then G is a usual multivariate function.

▶ If m = 1 and p = 1, then G is a usual (univariate) function.

For easier reference in the continuation we call g1, . . . , gm from (8) the
component (or coordinate) functions of G .
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Examples

1. A linear vector function G : Rn → Rm is such that all the component
functions gi are linear:

gi (x1, . . . , xn) = ai1 · x1+ ai2 · x2+ . . .+ ain · xn, where aij ∈ R. (10)

In this case
G (x⃗) = Ax⃗ ,

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

2. Adding constants bi ∈ R to the left side of (10) we get the definition
of an affine linear vector function,

gi (1, . . . , n) = ai1x1 + ai2x2 + . . . ainxn + bi ,

and then

G (x⃗) = Ax⃗ + b⃗, where b⃗ =
[
b1 b2 . . . bn

]T
.
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Examples

3. Most of the (vector) functions are nonlinear, e.g.,

f : R3 → R2, f (x , y , z) = (x2 + y2 + z2 − 1, x + y + z),

g : R2 → R3, g(z ,w) = (zw , cos z + w2 − 2, e2z),

h : R → R2, h(t) = (t + 3, e−3t).
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Derivative of a vector function - is needed in the algorithms we will use

The derivative of a vector function F : Rn → Rm in the point

a := (a1, . . . , an) ∈ Rn

is called the Jacobian matrix of F in a⃗:

JF (a⃗) = DF (a⃗) =


∂f1
∂x1

(a⃗) · · · ∂f1
∂xn

(a⃗)
...

. . .
...

∂fm
∂x1

(a⃗) · · · ∂fm
∂xn

(a⃗)

 =
[
grad f1(a⃗) · · · grad fm(a⃗)

]T
.

▶ If n = m = 1, the Jf (x) = f ′(x) is the usual derivative.
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Derivative - continued

▶ For general n and m = 1, f is a function of n variables and

Jf (x⃗) = (grad f (x⃗))T

is its gradient.

Proof: Click
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Examples

1. For an affine linear function f : Rn → Rm, given by f (x⃗) = Ax⃗ + b⃗, it
is easy to check that

Jf (x⃗) = A.

2. For a vector function f : R3 → R2, given by

f (x , y , z) = (x2 + y2 + z2 − 1, x + y + z),

then

Jf (x , y , x) =

[
2x 2y 2z
1 1 1

]
.
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Application of the derivative - linear approximation

A linear approximation of the vector function f : Rn → Rm at the point
a⃗ ∈ Rn is the affine linear function

La⃗ : Rn → Rm, La⃗(x⃗) = Ax⃗ + b⃗

that satisfies the following conditions:

1. It has the same value as f in a⃗: La⃗(a⃗) = f (a⃗).

2. It has the same derivative as f at a⃗: JLa⃗(a⃗) = Jf (a⃗).

It is easy to check that

La(x) = f (a⃗) + Jf (a⃗)(x⃗ − a⃗)T.

▶ n = m = 1:
La⃗(x) = f (a⃗) + f ′(a⃗)(x⃗ − a⃗)

The graph y = La⃗(x) is the tangent to the graph y = f (x) at the point a.
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Application of the derivative - linear approximation continued

▶ If n = 2 and m = 1, then

L(a,b)(x , y) = f (a, b) + (gradf (a, b))T
[
x − a
y − b

]
.

The graph
z = L(a,b)(x , y)

is the tangent plane to the surface z = f (x , y) at the point (a, b).

Proof: Click
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Example

The linear approximation of the function

f : R3 → R2, f (x , y , z) = (x2 + y2 + z2 − 1, x + y + z)

at a = (1,−1, 1) is the affine linear function

La(x , y , z) = f (1,−1, 1) + Df (1,−1, 1)

x − 1
y + 1
z − 1


=

[
2
1

]
+

[
2 −2 2
1 1 1

] x − 1
y + 1
z − 1


=

[
2 + 2(x − 1)− 2(y + 1) + 2(z − 1)

1 + (x − 1) + (y + 1) + (z − 2)

]

=

[
2 −2 2
1 1 1

]xy
z

+

[
−4
0

]
.
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3.2 Solving systems of nonlinear equations

Let f : D → Rm be a vector function, defined on some set D ⊂ Rn.

We will study the Gauss-Newton method to solve the system f (x) = 0 in
terms of least squares. This is one of the numerical methods for searching
approximate solution of this system. It is based on linear approximations of
f .
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Newton’s method for n = m = 1

We are searching zeroes of the function f : D → R, D ⊆ R, i.e., we are
solving f (x) = 0.

Newton’s or tangent method:

We construct a recursive sequence with:

▶ x0 is an initial term,

▶ xk+1 is a solution of

Lxk (x) = f (xk) + f ′(xk)(x − xk) = 0, so xk+1 = xk − f (xk )
f ′(xk )

.
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Newton’s method for n = m = 1 - continued

Theorem
The sequence xi converges to a solution α, f (α) = 0, if:

(1) 0 ̸= |f ′(x)| for all x ∈ I , where I is some interval containing α,

(2) x0 is sufficiently close to α.

Under these assumptions the convergence is quadratic, meaning that:

If we denote by εj = |xj − α|, then εi+1 ≤ Mε2i ,

where M is some constant. If f is twice differentiable, then

M ≤ max
x∈I

|f ′′(x)|/min
x∈I

|f ′(x)|.
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Proof.
Condition (1) implies in particular that α is a simple zero of f . Plugging α
in the Taylor expansion of f around xi we get

0 = f (α) = f (xi ) + f ′(xi )(α− xi ) +
f ′′(η)

2
(α− xi )

2

= f (xi ) + f ′(xi )(α− xi ) +
f ′′(η)

2
(α− xi )

2

(11)

where η is between α and xi . Dividing (11) with f ′(xi ) we get

0 =
f (xi )

f ′(xi )
− (α− xi ) +

f ′′(η)

2f ′(xi )
e2i

and hence (
xi −

f (xi )

f ′(xi )

)
− α = xi+1 − α =

f ′′(η)

2f ′(xi )
e2i .

Thus,

ei+1 =

∣∣∣∣ f ′′(η)2f ′(xi )

∣∣∣∣ e2i
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Now ∣∣∣∣ f ′′(η)f ′(xi )

∣∣∣∣ ≤ maxx∈I |f ′′(x)|
minx∈I |f ′(x)|

.

To prove that the sequence converges note that there exists δ0 > 0 such
that

Mδ0 < 1.

Hence, if ei ≤ δ0, then

ei+1 =

∣∣∣∣ f ′′(η)2f ′(xi )

∣∣∣∣ e2i =
1

2
ei .

Therefore

lim
n→∞

en = lim
n→∞

1

2n
· e0 = 0.
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Newton’s method for n = m > 1

Newton’s method generalizes to systems of n nonlinear equations in n
unknowns:

▶ x⃗0 – initial approximation,

▶ x⃗k+1 – solution of

Lx⃗k (x⃗) = f (x⃗k) + Df (x⃗k)(x⃗ − x⃗k) = 0,

so
x⃗k+1 = x⃗k − Df (x⃗k)

−1f (x⃗k).

In practice inverses are difficult to calculate (require to many operations)
and the linear system for ∆x⃗k = x⃗k+1 − x⃗k

Df (x⃗k)∆x⃗k = −f (x⃗k)

is solved at each step (using LU decomposition of Df (x⃗k)) and hence

x⃗k+1 = x⃗k +∆x⃗k .
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Example

Derive Newton’s method for solving the system of quadratic equations:

x2 + y2 − 10x + y = 1,

x2 − y2 − x + 10y = 25.

We are searching for the zero of the vector function

F : R2 → R2, F (x , y) = (x2 + y2 − 10x + y − 1, x2 − y2 − x + 10y − 25).

The Jacobian of F in (x , y) is

DF (x , y) =

[
2x − 10 2y + 1
2x − 1 −2y + 10

]
.

Using Newton’s metod we:

▶ Choose an initial term (x0, y0).

▶ Calculate xr+1 = xr +∆xr , where DF (xr , yr )∆xr = −F (xr , yr )
T .
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Gradient descent
Optimization methods can also be used to ensure a sufficiently accurate starting

approximation for the Newton-based techniques. (Like bisection does for a single

one-variable equation.)

Finding solutions of the system F (x⃗) = 0⃗, where

F = [F1, . . . ,Fn]
T : Rn → Rn

is equivalent to finding global minima of

g(x⃗) := ∥F∥2 = F1(x⃗)
2 + . . .+ Fn(x⃗)

2 : Rn → R.

We search for the local minima (which are not necessarily global minima!) of g
as follows:

1. Choose x⃗0.

2. Determine the constant α in x⃗r − α · (grad g)(x⃗r )) which mimimises

h(α) = g(x⃗r − α · (grad g)(x⃗r )).

(Or is significantly smaller than h(0) = g(x⃗r ).)

3. x⃗r+1 = x⃗r − α · (grad g)(x⃗r ).
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Chapter 3:

Curves
▶ Definition and examples

▶ Derivative

▶ Arc length

▶ Plotting plane curves

▶ Area bounded by plane curves
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Curves - definition and examples

A parametric curve (or parametrized curve) in Rm is a vector function

f : I → Rm, f (t) =

 f1(t)
...

fm(t)

,
where I ⊂ R is a bounded or unbounded interval.

The independent variable (in this case t) is the parameter of the curve.

For every value t ∈ I , f (t) represents a point in Rm.

As t runs through I , f (t) traces a path, or a curve, in Rm.
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If m = 2, then for every t ∈ I ,

f (t) =

[
x(t)
y(t)

]
= r(t)

is the position vector of a point in the plane R2.

All points {f (t), t ∈ I} form a plane curve:

In this example x(t) = t cos t, y(t) = t sin t, t ∈ [−3π/4, 3π/4]
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If m = 3, then

f (t) =

x(t)y(t)
z(t)

 = r(t)

is the position vector of a point in R3 for every t, and {f (t), t ∈ I} is a
space curve:

In this example x(t) = cos t, y(t) = sin t, z(t) = t/5, t ∈ [0, 4π]
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Example

f (t) =

[
2 cos t
2 sin t

]
, t ∈ [0, 2π]

a circle with radius 2 and center (0, 0)

f (t) = r0 + te, t ∈ R,
r0, e ∈ Rm, e ̸= 0

line through r0 in the direction of e in
Rm

m=2:
slope k = e2/e1 if e1 ̸= 0
vertical if e = (0, e2)
horizontal if e = (e1, 0)
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Example

f (t) =

[
t3 − 2t
t2 − t

]
, t ∈ R

f (t) =

[
t + sin(3t)
t + cos(5t)

]
, t ∈ R
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A parametric curve f (t), t ∈ [a, b] is closed if f (a) = f (b).

Example

f (t) =

[
cos 3t
sin 5t

]
, t ∈ [0, 2π]
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Problem: What path does the valve on your bicycle wheel trace as you bike
along a straight road?

Represent the wheel as a circle of radius a rolling along the x-axis, the valve
as a fixed point on the circle, the parameter is the angle of rotation:

The curve is a cycloid: x(θ) = aθ − a sin θ, y(θ) = a− a cos θ.
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The following parametric curves all describe the circle with radius a around
the origin (as well as many others):

f1(t) =

[
a sin t
a cos t

]
, t ∈ [0, 2π]

f2(t) =

[
a cos 2t
a sin 2t

]
, t ∈ [0, 2π]

f3(t) =

[
a cos t
a sin t

]
, t ∈ R
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Derivative, linear approximation, tangent

The derivative of the vector function f (t) =

 x1(t)
...

xm(t)

 at the point a is

the vector:

Df (a) =

 x ′1(a)
...

x ′m(a)

 = f ′(a) = lim
h→0

1

h
(f (a+ h)− f (a))

The vector f ′(a) (if it exists) represents the velocity vector of a point
moving along the curve at the point t = a.

If f ′(a) ̸= 0⃗ it points in the direction of the tangent at t = a.
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The linear approximation of the function f at t = a is

La(t) = f (a) + (t − a)f ′(a)

▶ If f ′(a) ̸= 0⃗, this is a parametric line corresponding to the tangent line
to the curve f (t) at t = a. In this case f (a) is a regular point of the
parametrization.

▶ If f ′(a) = 0⃗ (or if it does not exist), the parametrization of the curve is
singular in the point f (a).

▶ A curve C ∈ Rm is smooth at a point P on C if there exists a
parametrization f (t) of C , such that f (a) = P and f ′(a) ̸= 0⃗.

▶ A smooth curve has a tangent at every point P ∈ C .
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Problem: Is the curve C = {f (t), t ∈ [0,
√
2π]},

f (t) =

[
cos(t2)
sin(t2)

]
, smooth?

Since x2 + y2 = 1, f (t) is a parametrization of the unit circle which is a
smooth curve (it has a tangent at every point).

Since f ′(0) = 0 the parametrization f is singular in the point (1, 0).

However, a smooth parametrization exists. Can you find it?
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Problem: Is the cycloid a smooth curve?

Our parametrization

f (t) =

[
t − sin t
1− cos t

]
, f ′(t) =

[
1− cos t
sin t

]
is not smooth at t = 2kπ since f ′(2kπ) = 0.

Does a tangent exist?
The slope of the tangent line at a point f (t) is:

kt =
y ′(t)

x ′(t)
=

sin t

1− cos t

The left and right limits as t → 2kπ are

lim
t↗2kπ

kt = lim
t↗2kπ

cos t

sin t
= −∞, limt↘2kπkt = lim

t↘2kπ

cos t

sin t
= ∞,

so at these points the curve forms a sharp spike (a cusp) and a tangent does not exist.

So, the cycloid is not smooth at the points where it touches the x axis.

(l’Hospital’s rule was used to compute the limits.)
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Arc length and the natural parametrization

The arc length s of a parametric curve f (t), t ∈ [a, b], in Rm is the length
of the curve between the points t = a in t = b, i.e. the distance covered by
a point moving along the curve between these two points.

Example
For example, what distance does a point on the circle cover when the circle makes one
full turn?

Proposition

The arc length s of a parametric curve f (t) between the points t = a and
t = b is given by

s =

∫ b

a
∥f ′(t)∥ dt.
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Proof of the Proposition
An aproximate value for s is the length of a polygonal curve connecting close enough
points on the curve:

sn =
n∑

i=1

∥f (ti )− f (ti−1)∥

=
n∑

i=1

∥f ′(ti−1)∥∆t

→n→∞

∫ b

a

∥f ′(t)∥ dt

where:

▶ The value f (ti ) = f (ti−1 +∆t), where ∆t = ti − ti−1, was approximated as
f (ti ) = f (ti−1) + f ′(ti−1)∆t and hence f (ti ) = f (ti−1) + f ′(ti−1)∆t. (Under the
assumption that f ′ is continuous.

▶ In the last line we used that the sum represents a Riemannian sum of the function
∥f ′(t)∥.

▶ For n big enough, sn is a practical approximation for s.
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Problem: The length of the path traced by a point on the circle after a full turn?

A parametrization is f (t) =

[
t − sin t
1− cos t

]
and hence:

s =

∫ 2π

0

√
(1− cos t)2 + sin2 t dt =

∫ 2π

0

√
2− 2 cos t dt =

∫ 2π

0

√
4 sin2(t/2) dt

=

∫ 2π

0

2 sin(t/2) dt = −4(cos(π)− cos(0)) = 8.

Problem: What is the arc length of the helix f (t) =

a cos ta sin t
bt

, 0 ≤ t ≤ 2π?

Problem: The circumference of the elipse

[
a cos t
b sin t

]
, a ̸= b?

∫ 2π

0

√
a2 sin2 t + b2 cos2 t dt = 4a

∫ π/2

0

√
1− e2 sin2 t dt = 4aE(e)

where e =
√

1− (b/a)2 is its eccentricity and the function E is the nonelementary elliptic
integral of 2nd kind. It can be computed numerically, which is briefly explained in the
next few slides.
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Plane curves

For a plane curve f (t) =

[
x(t)
y(t)

]
the tangent at a regular point f (a) is

▶ the vertical line
x = x(a)

if x ′(a) = 0 and y ′(a) ̸= 0,

▶ the line

y − y(a) =
y ′(a)

x ′(a)
(x − x(a))

if x ′(a) ̸= 0,

▶ the horizontal line
y = y(a)

if y ′(a) = 0 and x ′(a) ̸= 0.
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Plotting a parametric plane curve

Here is a general strategy:

▶ find the asymptotic behaviour: lim
t→∞

f (t), lim
t→−∞

f (t)

▶ find intersections with coordinate axes: solve y(t) = 0 and x(t) = 0

▶ find points where the tangent is vertical or horizontal: solve x ′(t) = 0 and y ′(t) = 0

▶ find self-intersections: solve f (t) = f (s), t ̸= s

▶ and the two tangents there

▶ look for other helpful features . . .

▶ connect points r(t) = f (t) by increasing t
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Problem: find the self-intersection (if there is one) of a parametric curve

Let f (t) =

[
t3 − 2t
t2 − t

]

A self-intersection is at a point f (t) = f (s), with t ̸= s, so:

t3 − 2t = s3 − 2s and t2 − t = s2 − s

⇒ t3 − s3 = 2t − 2s and t2 − s2 = t − s

Since t ̸= s we can divide by t − s:

t2 + ts + s2 = 2 and t + s = 1

⇒ t = 1− s and (1− s)2 + s(1− s) + s2 = 2.

The self-intersection (where s and t can be interchanged) is at

s = (1 +
√
5)/2, t = (1−

√
5)/2, f (t) = f (s) =

[
1
1

]
.
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Problem: do two parametric curves intersect. Imagine two cars speeding
along the two curves. Do they crash?

Let f1(t) =

[
t2 − 1

−t3 − t2 + t + 1

]
, f2(s) =

[
s − 1
1− s2

]
.

To find the intersections, solve the system

t2 − 1 = s − 1 and − t3 − t2 + t + 1 = 1− s2

⇒ s = t2 and − s6 − s4 + s2 + 1 = 1− s2

There are three solutions:

t = −1, s = 1 ⇒ x = 0, y = 0
t = 0, s = 0 ⇒ x = −1, y = 1
t = 1, s = 1 ⇒ x = 0, y = 0

The cars meet at t = 0, s = 0 at the point (−1, 1) and at t = 1, s = 1 at the point (0, 0).
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Problem: plot f (t) =

[
t2 − 1

−t3 − t2 + t + 1

]
, f ′(t) =

[
2t

−3t2 − 2t + 1

]

▶ Asymptotic behaviour: lim
t→∞

f (t) =

[
∞
−∞

]
, lim
t→−∞

f (t) =

[
∞
∞

]
,

▶ intersections with axes:t = ±1, at
(0, 0)
this is also a self-intersection

▶ the two tangent lines at (0, 0)
▶ at t = −1: y = 0,

▶ at t = 1: y = −2x

▶ vertical tangent: t = 0 at (−1, 1)

▶ horizontal tangent
▶ at t1 = −1, y = 0,

▶ at t2 = 1/3, y = 32/27
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Areas bounded by plane curve

I. Let f (t) =

[
x(t)
y(t)

]
, t ∈ [a, b]

x ′(t) > 0

The area of the quadrilateral bounded by the curve and the x-axis is

P =

∫ x(b)

x(a)
|y(x)| dx =

∫ b

a
|y(t)|x ′(t) dt

Problem: the area under one arc of the cycloid:

x(t) = at − a sin t, y(t) = a− a cos t,

P =

∫ 2π

0

a2(1− cos t)2 dt = a2
∫ 2π

0

(
3

2
− 2 cos t +

1

2
cos(2t)

)
dt = 3a2π.
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II. The area of the triangular region bounded by the curve f (t), t ∈ [a, b],
and the two end-point position vectors f (a) and f (b):

P =
1

2

∫ b

a
|x(t)y ′(t)− y(t)x ′(t)| dt.
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Proof of the area formula

An approximate value of the area is the sum of areas of triangles obtained by subdividing
the interval [a, b] into n intervals of length ∆t = (b − a)/n.

The area of a triangle with vertices (0, 0), f (ti ), f (ti+1) is

∆Pi =
1

2
∥f (ti+1)× f (ti )∥

.
=

1

2
∥(f (ti ) + f ′(ti )∆t)× f (ti )∥

=
1

2
∥f ′(ti )× f (ti )∥∆t =

1

2
|y ′(ti )x(ti )− x ′(ti )y(ti )|∆t,

where the last equlatiy follows from the calculation

f ′(ti )× f (ti ) = (x ′(ti ), y
′(ti ), 0)× (x(ti ), y(ti ), 0)

= (x ′(ti )y(ti )− y ′(ti )x(ti ), 0, 0).

The area is obtained by adding these and letting n → ∞:

P = lim
n→∞

1

2

n−1∑
i=0

|y ′(ti )x(ti )− x ′(ti )y(ti )|∆t

=
1

2

∫ b

a

|x(t)y ′(t)− y(t)x ′(t)| dt.
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Problem: the area bounded by

1. the asteroid x(t) = cos3 t, y(t) = sin3 t, t ∈ [0, 2π] is

2. the elipse x = a cos t, y = b sin t, t ∈ [0, 2π] is

Hint. In both problems use the identities

sin2 t =
1

2
(1− cos(2t)), cos2 t =

1

2
(1 + cos(2t)).

In the first problem all you have to really integrate after subtractions of some terms is

1− cos2(2t). The results are 3π
8

for the first and abπ for the second problem.
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Chapter 5:

Differential equations and dynamic
models

▶ Ordinary differential equation (ODE)
▶ Definition and examples
▶ Solving first order ODEs

▶ Separable ODEs
▶ First order linear ODEs
▶ Homogeneous ODEs

▶ Orthogonal trajectories
▶ Exact ODEs
▶ Geometric picture of ODEs

▶ Systems of first order ODEs
▶ Numerical methods for solving ODEs
▶ Autonomous system of ODEs
▶ Dynamics of systems of 2 linear ODEs
▶ Linear ODEs of order n
▶ Application - vibrating systems
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Differential equations and dynamic models

Ordinary differential equation, ODE, is an equation of an unknown function
and an independent variable. ODE relates the independent variable with
the function and its derivatives.

If t is an independent variable, x(t) is a function of t, then the ODE is of
the form:

F (t, x , ẋ , ẍ , . . . , x (n)) = 0.

Similarly if x is an independent variable, y(x) a function of x , then the
ODE is of the form:

F (x , y , y ′, y ′′, . . . , y (n)) = 0.

The order of a differential equation is the order of the highest derivative.
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Examples of ODEs
▶ ẋ − 3t2 = 0.

So,
dx

dt
= 3t2 ⇒ x(t) = t3 + C , where C is a constant.

If we want to determine C , we need an additional condition, e.g.,
initial condition x(0) = x0, x0 ∈ R, or any other condition x(t0) = x0,
x0 ∈ R.

▶ y ′′(x) + 2y ′(x) = 3y(x).

We will learn how to solve such an ODE, but right now let us only
check that y(x) = Ce−3x , C ∈ R a constant, is a solution:
▶ Calculate y ′′(x), y ′(x):

y ′(x) = −3Ce−3x , y ′′(x) = 9Ce−3x .

▶ Plug into the given ODE:

9Ce−3x − 6Ce−3x = 3Ce−3x .
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▶ cos t · ẍ − 3t4 · ẋ + 5et = 0.

Such ODE’s cannot be solved analytically (or are at least hard to
solve). We will learn how to solve such ODE’s by using numerical
methods.

Partial differential equation, PDE, is an equation for an unknown function u
of n ≥ 2 independent variables, e.g., for n = 2 we have

F (x , y , ux , uy , uxx , . . .) = 0,

where x , y are the independent variables.

We will not consider PDE’s, from now on DE means an ODE.
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Applications of DEs
Differential equations are used for modelling a deterministic process: a law
relating a certain quantity depending on some independent variable (for
example time) with its rate of change, and higher derivatives.

1. Newton’s law of cooling:

Ṫ = k(T − T∞), (12)

where T (t) is the temperature of a homogeneous body at time t, T0 is
the initial temperature at time t0 = 0, T∞ is the temperature of the
environment, k is a constant (heat transfer coefficient).

(12) is an example of a separable ODE and also the first order linear
ODE. We will see shortly how to solve such types of ODE’s. For now
you can check easily by yourself that the solution is

T (t) = T∞ + (T0 − T∞)ekt ,

which only makes sense if k < 0.
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2. Radioactive decay:

ẏ(t) = −ky(t), k =
log 2

t1/2
,

where y(t) is the remaining quantity of a radioactive isotope at time t,
t1/2 is the half-life and k is the decay constant. The solution is

y(t) = Ce−kt , where C is a constant.

Let’s verify, that t1/2 really represents the time in which the amount of
the isotope decreases to half of its current amount. At time t = 0 the
amount is y(0) = Ce0 = C . We have to check that y(t1/2) =

C
2 :

y(t1/2) = Ce−
k log 2

k = Ce− log 2 = Ce log 1/2 =
C

2
.

3. Simple harmonic oscillator:

ẍ + ωx = 0.
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Solution of a DE

The function x(t) is a solution of a DE

F (t, x , ẋ , ẍ , . . . , x (n)) = 0

on an interval I if it is at least n times differentiable and satisfies the
identity

F (t, x(t), ẋ(t), ẍ(t), . . . , x (n)(t)) = 0

for all t ∈ I .

Analytically solving a DE is typically very difficult, very often impossible.

To find approximate solutions we use different simplifications and numerical
methods.
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First order ODEs

We will (mostly) consider first order ODEs in the form

ẋ = f (t, x).

▶ The general solution is a one-parametric family of solutions
x = x(t,C ).

▶ A particular solution is a specific function from the general solution,
that usually satisfies some initial condition x(t0) = x0.

▶ A singular solution is an exceptional solution that is not part of the
general solution.

We will first look at some simple types of 1.-st order DEs that are
analytically solvable.
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Separable DE
A separable DE is of the form

ẋ = f (t)g(x). (13)

This can be solved by:

▶ Inserting ẋ =
dx

dt
into (13):

dx

dt
= f (t)g(x). (14)

▶ Separating variables in (14):

dx

g(x)
= f (t) dt. (15)

▶ Integrating both sides of (14):∫
1

g(x)
dx =

∫
f (t) dt + C
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Example 1 of a separable DE

ẋ = kx where k ∈ R is a fixed real number (16)

▶
dx

dt
= kx ,

▶
dx

x
= kdt,

▶

log |x | =
∫

dx

x
=

∫
k dt = kt + C ,

where C is a constant and so

|x | = ekt+C

is a general solution to (16). Clearly, x(t) = 0 is also a solution of the
equation. By introducing a new constant eC which, by abuse of notation,
we again denote by C , this is equivalent to

x(t) = Cekt ,C ∈ R.
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Example 2 of a separable DE

ẋ = kx(1− x) where k ∈ R is a fixed real number (17)

▶
dx

dt
= kx(1− x),

▶
dx

x(1− x)
= kdt,

▶ By the method of partial fractions we get

log

∣∣∣∣ x

1− x

∣∣∣∣ = log |x |−log |1−x | =
∫

dx

x
−
∫

dx

1− x
=

∫
k dt = kt+C ,

where C is a constant and so
x

1− x
= Cekt .

Expressing x(t) we get

x(t) =
1

Ce−kt + 1
(18)

is a general solution to (17). x(t) from (18) is called a logistic function.
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Example 3 of a separable DE

y ′ =
−x

yex2
, y(0) = 1. (19)

▶
dy

dx
=

−x

yex2
,

▶
ydy = −xe−x2dx ,

▶ Integrating:

y2

2
=

∫
ydy =

∫
(−xe−x2)dx =

1

2
e−x2 + C ,

where C is a constant.
▶ 1

2 = y2(0)
2 = 1

2 + C ⇒ C = 0.

Expressing y(x) we get y(x) = ±
√
e−x2 and since y(0) > 0 we have

y(x) =
√
e−x2 .
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Real life DE example: population growth

Let x(t) be the size of a population (bacteria, trees, people, . . .) at time t.
The most common models for population growth are:

▶ exponential growth: the growth rate is proportional to the size,
modelled by ẋ = kx , with the solution the exponential function
x(t) = x0e

kt , where x0 = x(0) is the initial population size.

▶ logistic growth: the growth rate is proportional to the size and the
resources, modelled by ẋ = kx(1− x/xmax), where xmax is the capacity
of the environment, i.e., maximal population size that it still supports,
with the solution is the logistic function.

▶ general model: the growth rate is proportional to the size, but the
proportionality factor depends on time and size, modelled by
ẋ = k(x , t)f (x); the equation is not separable and is analytically
solvable only in very specific cases.

117/206



Real life DE example: information spreading

x(t) is the ratio of people in a given group that at time t knows a certain
piece of information.

Let x0 = x(t0) be the ‘informed’ ratio at time t = t0.

Consider two possible models:

▶ spreading through an external source: the rate of change is
proportional to the uninformed ratio ẋ = k(1− x) with x0 = 0,

▶ spreading through ”word of mouth” the rate of change is proportional
to the number of encounters between informed and uninformed
members ẋ = kx(1− x) logistic law, again, with x0 > 0.
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First order linear ODE
A first order linear DE is of the form

ẋ + f (t)x = g(t) (20)

The equation is homogeneous if g(t) = 0 and nonhomogenous if g(t) ̸= 0.

A homogeneous part of (20),

ẋ + f (t)x = 0, (21)

has a general solution of the form

Cxh(t), (22)

where C ∈ R is a constant and xh(t) is a particular solution. Indeed:

▶ Every x(t) of the form (22) is a solution of (21):

x ′(t) + f (t)x(t) = (Cxh)
′(t) + f (t)Cxh(t)

= Cx ′h(t) + f (t)Cxh(t)

= C (x ′h(t) + f (t)xh(t))

= 0
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▶ If x(t) is a solution of (21), then it must be of the form (22). Indeed,
since x(t) and xh(t) both solve (21),(

x(t)

xh(t)

)′
=

x ′(t)xh(t)− x(t)x ′h(t)

x2h (t)

=
−f (t)x(t)xh(t) + f (t)x(t)xh(t)

x2h (t)

= 0.

Hence, x(t)
xh(t)

= C for some constant C and x(t) is of the form (22).

Let xp(t) be any particular solution of (20):

x ′p(t) + f (t)xp(t) = g(t). (23)

The general solution of (20) is a sum

x(t) = Cxh(t) + xp(t). (24)

120/206



Indeed:

▶ Every x(t) of the form (24) is a solution of (20):

x ′(t) + f (t)x(t) = (Cxh(t) + xp(t))
′ + f (t)(Cxh(t) + xp(t))

= Cx ′h(t) + x ′p(t) + f (t)Cxh(t) + f (t)xp(t)

= (Cx ′h(t) + f (t)Cxh(t)) + (x ′p(t) + f (t)xp(t))

= 0 + g(t),

where we used (23) in the last equality.

▶ If x(t) is a solution of (20), then it must be of the form (24). Indeed,
since x(t) and xp(t) both solve (20), x(t)− xp(t) solves the
homogenous part (21) of (20). Hence, x(t)− xp(t) = Cxh(t) for some
C and x(t) = Cxh(t) + xp(t).

The particular solution xp can be obtained by variation of the constant,
that is, by substituting the constant C is the homogenous solution by an
unknown function C (t) which is then determined from the equation.
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Example of a linear ODEs

t2ẋ + tx = 1 , x(1) = 2 . (25)

1. The homogenous part is

t2ẋ + tx = 0. (26)

So the solution xh to (26) is

t2 dx = −tx dt ⇒ dx

x
= −dt

t
⇒ log |x | = − log |t|+ logC = log

C

|t|

⇒ xh =
C

t
.

2. A particular solution of the nonhomogenous equation is obtained by
variation of the constant:

x =
C (t)

t
, ẋ =

C ′(t)t − C (t)

t2

by inserting into (25) we obtain

C ′(t)t − C (t) + C (t) = 1 ⇒ C ′(t) =
1

t
⇒ C (t) = log |t|.
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3. So the general solution of the nonhomogenous equation is

x(t) =
C

t
+

log |t|
t

. (27)

4. Finally, since x(1) = 2, we get by plugging t = 1 into (27)

2 = x(1) = C

and hence the solution of (25) is

x(t) =
2 + log |t|

t
.
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General solution of a linear DE

y ′(x) = f (x)y(x) + g(x) . (28)

1. The homogenous part is

y ′(x) = f (x)y(x). (29)

So the solution y(x) to (29) is

log |y | =
∫

dy

y
=

∫
f (x)dx + C ⇒ y(x) = C · e

∫
f (x)dx

2. A particular solution of the nonhomogenous equation is obtained by
the variation of the constant:

y(x) = C (x) · e
∫
f (x)dx . (30)

y ′(x) = C ′(x) · e
∫
f (x)dx + C (x)f (x)e

∫
f (x)dx . (31)

Using that (28)=(31) and by inserting the RHS of (30) instead of y(x)
in (28), we obtain

C ′(x) · e
∫
f (x)dx + C (x)f (x)e

∫
f (x)dx = f (x)C (x) · e

∫
f (x)dx + g(x)
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Hence
C ′(x) · e

∫
f (x)dx = g(x),

and so

C (x) =

∫
(g(x)e−

∫
f (x)dx)dx .

Proposition

The solution of (28) is

y(x) = e
∫
f (x)dx(C +

∫
(g(x)e−

∫
f (x)dx)dx).

In the example t2ẋ + tx = 1 (or ẋ = −1
t x + 1

t2
) above we get

x(t) = e
∫
− 1

t
dt
(
C +

∫ ( 1

t2
e
∫

1
t
dt
)
dt
)

= e log |
1
t
|
(
C +

∫ ( 1

t2
t
)
dt
)

=
1

t
(C + log |t|).
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Real life example: Newton’s second law
A ball of mass m kg is thrown vertically into the air with initial velocity
v0 = 10 m/s. We follow its trajectory. By Newton’s second law of motion,

F = ma,

where m is the mass, a = v̇ = ẍ is acceleration and v velocity, and F is the
sum of forces acting on the ball.
▶ Assuming no air friction the model is

mv̇ = −mg ,

where g is the gravitational constant. The solution is

v = −gt + C whereC is a constant.

▶ Assuming the linear law of resistance (drag) Fu = −kv the model is

mv̇ = −mg − kv .

The solution is v = vh + vp where

vh = Ce−kt/m and vp = −mg/k .
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Motion of ball in the case m = 1, k = 1 and approximating g
.
= 10 (we will

omit units)

Model Velocity and position Solution

ma = −mg

v̇ = −10

v(t) = −10t + 10
x(t) = −5t2 + 10t

ma = −mg − kv

v̇ = −v − 10

v(t) = 20e−t − 10
x(t) = 20− 20e−t − 10t
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The ball reaches the top at time t where v(t) = 0 and the ground at time t
where x(t) = 0.

▶ Assuming no friction, the ball is at the top at t = 10.

At time t = 1, x(t) = 0, so it takes the same time going up and falling
down.

▶ Assuming linear friction, the ball reaches the top at t = log 2.

At time 2 log 2, x(2 log 2) = 20− 5− 20 log 2 > 0 so it takes longer
falling down than going up.
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Homogeneous DE
A homogeneous (nonlinear) DE is of the form

ẋ = f
(x
t

)
. (32)

The solution is obtained by introducing a new dependent variable

u =
x

t
.

Hence x = ut and differentiating with respect to t we get

ẋ = u̇t + u. (33)

Plugging (33) into (32) we get

u̇t + u = f (u). (34)

Rearranging (34) we obtain

tu̇ = f (u)− u,

which is a separable DE.
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Example (Homogeneous DE)

y ′ =
y − x

x

can be written as
y ′ =

y

x
− 1. (35)

Introducing a new dependent variable

u =
y

x
,

plugging in (35), we get
u′x + u = u − 1. (36)

This is equivalent to
u′x = −1

and hence

u =
y

x
= log

(C
x

)
.
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Orthogonal trajectories
Given a 1-parametric family of curves

F (x , y , a) = 0 where a ∈ R,

an orthogonal trajectory is a curve

G (x , y) = 0

that intersects each curve from the given family at a right angle.

Algorithm to obtain orthogonal trajectories:

1. The family F (x , y , a) = 0 is the general solution of a 1st order DE,
that is obtained by differentiating the equation with respect to the
independent variable (using implicit differentiation) and eliminating the
parameter a.

2. By substituting y ′ for −1/y ′ in the DE for the original family, we
obtain a DE for curves with orthogonal tangents at every point of
intersection.

3. The general solution to this equation is the family of orthogonal
trajectories to the original equation.
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Example (Orthogonal trajectories to the family of circles)

Let us find the orthogonal trajectories to the family of circles through the
origin with centers on the y axis:

x2 + y2 − 2ay = 0. (37)

Differentiating (37) w.r.t. the independent variable gives

2x + 2yy ′ − 2ay ′ = 0. (38)

Expressing a from (38) gives

a =
x

y ′
+ y . (39)

Inserting (39) into (37) we obtain the DE for the given family

x2 − y2 − 2xy

y ′
= 0. (40)
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Next we express y ′ from (40) and obtain

y ′ =
2xy

x2 − y2
. (41)

The DE for orthogonal trajectories is obtained by substituting y ′ for −1/y ′

in (41) to obtain

− 1

y ′
=

2xy

x2 − y2
, (42)

which is equivalent to

y ′ = −x2 − y2

2xy
. (43)

(43) is a homogeneous DE:

y ′ = −x2 − y2

2xy
= − x

2y
+

y

2x

By introducing y = ux we obtain

u′x + u = − 1

2u
+

u

2
⇒ u′x = −1 + u2

2u
⇒ 2udu

1 + u2
= −dx

x

⇒ log (1 + u2) = − log x + logC ⇒ 1 + u2 =
C

x
,
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Plugging in u = y
x again gives the general solution

x2 + y2 = Cx .

Orthogonal trajectories to circles through the origin with centers on the y
axis are circles through the origin with centers on the x axis.

Both families together form an orthogonal net:
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Exact ODEs
Notice first that a 1st order DE

ẋ = f (t, x)

can be rewritten in the form

M(t, x)dt + N(t, x)dx = 0. (44)

Recall that the differential of a function u(t, x) is equal to

du =
∂u

∂t
dt +

∂u

∂x
dx =

(
∂u

∂t
,
∂u

∂x

)
· (dt, dx),

where · denotes the usual inner product in R2.

DE (44) is exact if there exists a differentiable function u(t, x) such that

∂u

∂t
= M(t, x) and

∂u

∂x
= N(t, x).
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Proposition

If the DE (44) is exact, then the solutions are level curves of the function u:

u(t, x) = C , where C ∈ R.

Recall from Calculus that if u has continuous second order partial derivatives then

∂u

∂x∂t
=

∂u

∂t∂x
.

Proposition

The necessary condition for the DE (44) to be exact is

∂M

∂x
=

∂N

∂t
. (45)

Moreover, if M and N are differentiable for every (t, x) ∈ R2, the condition
(45) is also sufficient.

136/206



A potential function u can be determined from the following equality

u(x , t) =

∫
M(t, x) dt + C (x) =

∫
N(t, x) dx + D(t),

where C (x) and D(t) are some functions.

Example. The DE
x + ye2xy + xe2xyy ′ = 0

can be rewritten as
(x + ye2xy )dx + xe2xydy = 0.

The equation is exact since

∂(x + ye2xy )

∂y
=

∂(xe2xy )

∂x
= (e2xy + 2xye2xy ).

A potential function is equal to

u(x , y) =

∫
(x + ye2xy ) dx =

x2

2
+

1

2
e2xy + C (y)

=

∫
(xe2xy ) dy =

1

2
e2xy + D(x),

Defining C (y) = 0 and D(x) = x2/2, we get u(x , y) = x2

2 + 1
2e

2xy . The general

solution is the family of level curves u(x , y) = E , where E ∈ R.
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Geometric picture of ODEs

Let D ⊂ R2 be the domain of the function f (x , y). For each point
(x , y) ∈ D the DE

y ′ = f (x , y)

gives the value y ′ of the coefficient of the tangent to the solution y(x)
through this specific point, that is, the direction in which the solution
passes through the point.

All these directions together form the directional field of the equation.

A solution of the equation is represented by a curve y = y(x) that follows
the given directions at every point x , i.e., the coefficient of the tangent
corresponds to the value f (x , y(x)).

The general solution to the equation is a family of curves, such that each of
them follows the given direction.
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Directional fields and solutions of

y ′ = ky y ′ = ky(1− y)

Examples: Click
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Theorem (Existence and uniqueness of solutions)

If f (x , y) is continuous and differentiable with respect to y on the rectangle

D = [x0 − a, x0 + a]× [y0 − b, y0 + b], a, b > 0

then the DE with initial condition

y ′ = f (x , y), y(x0) = y0,

has a unique solution y(x) defined at least on the interval

[x0 − α, x0 + α], α = min

{
a,

b

M
,
1

N

}
,

where

M = max{f (x , y) : (x , y) ∈ D} and N = max

{
∂f (x , y)

∂y
: (x , y) ∈ D

}
.

Proof: https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem.
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Numerical methods for solving DE’s

We are given the DE with the initial condition

y ′(x) = f (y , x), y(x0) = y0.

Instead of analytically finding the solution y(x), we construct a recursive
sequence of points

xi = x0 + ih, yi
.
= y(xi ), i ≥ 0

where yi is an approximation to the value of the exact solution y(xi ), and h
is the step size.

A number of numerical methods exists, the choice depends on the type of
equation, desired accuracy, computational time,...

We will first look at the simplest and best known method and then a more
practical improvement.
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Euler’s method
Euler’s method is the simplest and most intuitive approach to numerically
solve a DE.

At each step the value yi+1 is obtained as the point on the tangent to the
solution through (xi , yi ) at xi+1 = xi + h:

▶ initial condition: (x0, y0)
▶ for each i : xi+1 = xi + h, yi+1 = yi + hf (xi , yi ).

The point (xi+1, yi+1) typically lies on a different particular solution than
(xi , yi ), at each step, the error at each step is of order O(h2). The
cumulative error is of order O(h). 142/206



Runge-Kutta methods
The idea of those methods is to approximate the derivative on the interval
[xn, xn+1] not only based on the derivative in the point xn, but using a
weighted average of more different derivatives on the interval [xn, xn+1].

Example (Runge-Kutta of order 2 (RK2))

We approximate the derivate using the derivatives in the points xn and
xn + ch ∈ [xn, xn+1], where h = xn+1 − xn and c ∈ [0, 1]. The
approximation yn+1 is computed using the weighted average of linear
approximations in the points xn and xn + ch:

yn+1 = yn + b1︸︷︷︸
weight

· (h · f (xn, yn))︸ ︷︷ ︸
move along

the tangent in xn

+ b2︸︷︷︸
weight

· (h · f (xn + ch, y(xn + ch)))︸ ︷︷ ︸
move along

the tangent in xn+ch

(46)

We use a linear approximation

y(xn + ch) ≈ yn + chy ′(xn) = yn + chf (xn, yn) ≈ yn + ahf (xn, yn), (47)

where a is a new parameter.
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Using (47) in (46) we obtain

yn+1 = yn + b1 · (h · f (xn, yn))︸ ︷︷ ︸
k1

+b2 · (h · f (xn + ch, yn + a · k1))︸ ︷︷ ︸
k2

. (48)

Using Taylor series’ of y(xn + h), f (xn + ch, yn + ak1) and comparing the
coefficients at h and h2 in (48) we get a system of equations

1 = b1 + b2,

1

2
(fx + fy f )n = b2c(fx)n + b2a(ffy )n,

(49)

where fn, (fx)n, (fy )n stands for f (xn, yn), fx(xn, yn), fy (xn, yn). The system
(49) has many different solutions, e.g.:

▶ b1 = b2 =
1
2 and c = a = 1. RK method is:

yn+1 = yn +
1

2
(k1 + k2),

k1 = hf (xn, yn),

k2 = hf (xn + h, yn + k1).
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▶ b1 = 0, b2 = 1 in c = a = 1
2 . RK method is:

yn+1 = yn + k2,

k1 = hf (xn, yn),

k2 = hf (xn +
1

2
h, yn +

1

2
k1).

A general RK method is of the form

yn+1 = yn + b1k1 + b2k2 + . . .+ bsks ,

k1 = hf (xn, yn),

k2 = hf (xn + c2h, yn + a2,1k1),

k3 = hf (xn + c3h, yn + a3,1k1 + a3,2k2),

...

ks = hf (xn + csh, yn + as,1k1 + . . .+ as,s−1ks−1).

(50)
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Butcher tableau

In a compact form the RK method (50) is given in the form of a Butcher
tableau:

0 0
c2 a2,1 0
c3 a3,1 a3,2 0
...

...
cs as1 as2 as,3 · · · as,s−1 0

b1 b2 b3 · · · bs−1 bs ,

where

c2 = a2,1,

c3 = a3,1 + a3,2,

...

cs = as,1 + as,2 + . . .+ as,s−1.
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Runge-Kutta mehod of order 4
Butcher tableau:

0 0

1

2

1

2
0

1

2
0

1

2
0

1 0 0 1 0

1

6

1

3

1

3

1

6
The method is

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4,

k1 = hf (xn, yn),

k2 = hf (xn +
1

2
h, yn +

1

2
k1),

k3 = hf (xn +
1

2
h, yn +

1

2
k2),

k4 = hf (xn + h, yn + k3).

The error at each step is of order O(h5). The cumulative error is of order O(h4).
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Euler vs RK4

Below is a comparison of Euler’s and Rk4 methods for the DE

y ′ = −y − 1, y(0) = 1 with step size h = 0.3 :

The red curve is the exact solution y = 2e−x − 1.

Euler’s method RK4

Algorithms and example: Click Click Click
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Adaptive Runge Kutta methods
Let M1, M2 be two RK methods with the same matrices of coefficients ai ,j
(and hence also ci ), but different vectors of weights bi and b∗i . Let M1 be
of order p (global error O(hp)), while the other of order p + 1 (global error
O(hp+1)).

Example: We use the adaptive method for the Butcher tableaus:

0 0
1 1 0

1 0
1
2

1
2

.

The first is Euler’s method and has order 1, while the other is RK method of order 2:

yn+1 = yn + k1,

y∗
n+1 = yn +

1

2
(k1 + k2).

The approximation of the local error:

ℓn+1 ≈ y∗
n+1 − yn+1 = (−k1 + k2)/2.

If ℓn+1 is small enough (we choose what this means in our problem), we accept yn+1 and

continue, otherwise we decrease the step size and repeat the computations.
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DOPRI5, Fehlberg, Cash-Karp

Very useful methods for practical computations are DOPRI5 (1980, authors
Dormand in Prince), Fehlberg (1969), Cash-Karp, which are adaptive
methods combining two RK methods, one of order 4 and one of order 5.

▶ https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method

▶ https:

//en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method

▶ https://en.wikipedia.org/wiki/Cash%E2%80%93Karp_method

Algorithm and example: Click Click
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Systems of first order ODE’s
Let

f := (f1, . . . , fn) : Rn+1 → Rn,

f (x1, . . . , xn+1) = (f1(x1, . . . , xn+1), . . . , fn(x1, . . . , xn+1)).

be a vector function. A system of first order DE’s is an equation

ẋ(t) = f (x(t), t), (51)

where
x(t) := (x1(t), . . . , xn(t)) : I → Rn

is an unknown vector function and I ⊂ R is some interval. Coordinate-wise
the system (51) is equal to

ẋ1(t) = f1(x1(t), . . . , xn(t), t),
...

ẋn(t) = fn(x1(t), . . . , xn(t), t).
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Solution of the system of DE’s

For every (x , t) ∈ Rn+1 in the domain of f , the value f (x , t) is the tangent
vector ẋ(t) to the solution x(t) at the given t.

The general solution is a family of parametric curves

x(t,C1, . . . ,Cn),

where C1,C2, . . . ,Cn ∈ R are parameters, with the given tangent vectors.

An initial condition
x(t0) = x0 ∈ Rn

gives a particular solution, that is, a specific parametric curve from the
general solution that goes through the point x0 at time t0.
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Linear systems of 1st order ODEs
A linear system of DEs is of the form ẋ1(t)

...
ẋn(t)

 =

 a11(t) . . . a1n(t)
...

. . .
...

an1(t) . . . ann(t)


 x1(t)

...
xn(t)

+

 g1(t)
...

gn(t)

 , (52)

where
xi : I → R, aij : I → R and gi : I → R

are functions of t and I ⊆ R is an interval. In a compact form (52) can be
written as

ẋ(t) = A(t)x + g(t), (53)

where
A(t) = [aij(t)]

n
i ,j=1

is a n × n matrix function and

g(t) =
[
g1(t) . . . gn(t)

]T
is a n × 1 vector function.
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The system (53)

▶ is homogeneous if for every t in the domain I we have g(t) = 0.

▶ has constant coefficients, if the matrix A is constant, i.e., independent
of t.

▶ is autonomous, if it is homogeneous and has constant coefficients.

An autonomous linear system

ẋ = Ax (54)

of 1st order DEs can be solved analytically, using methods from linear
algebra. Recall that such a system can be written in coordinates as:

ẋ1 = a11x1 + a12x2 + · · ·+ a1nxn,

ẋ2 = a21x1 + a22x2 + · · ·+ a2nxn,

...

ẋn = an1x1 + an2x2 + · · ·+ annxn.
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Autonomous system: diagonal matrix A

Assume first that the matrix A in (54) is diagonal. Then (54) is the
following:  ẋ1

...
ẋn

 =

 λ1 . . . 0
...

. . .
...

0 . . . λn


 x1

...
xn

 .

Or equivalently,

ẋ1 = λ1x1, ẋ2 = λ2x2, . . . , ẋn = λnxn.

In this (simple) case the general solution is easily determined:

x(t) =


C1e

λ1t

C2e
λ2t

...
Cne

λnt

 = C1e
λ1t


1
0
...
0

+ C2e
λ2t


0
1
...
0

+ · · ·+ Cne
λnt


0
0
...
1

 .
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Autonomous system: n linearly independent eigenvectors
Assume next, that A in (54) has n linearly independent eigenvectors
v1, . . . vn with the corresponding eigenvalues λ1, . . . , λn.

▶ For every fixed t, the vector x(t) can be expressed as a linear combination

x(t) = φ1(t)v1 + · · ·+ φn(t)vn.

▶ Hence, the coefficients

φi (t) : I → R, i = 1, . . . , n,

are functions of t.

▶ Since v1, . . . vn are eigenvectors it follows from ẋ = Ax , that
n∑

i=1

φ̇i (t)vi =
n∑

i=1

φi (t)Avi =
n∑

i=1

φi (t)λivi .

▶ Since v1, . . . vn are linearly independent, it follows that for every i we have

φ̇i (t) = λiφi (t) ⇒ φi (t) = Cie
λi t , Ci ∈ R.

▶ Hence the general solution of the system is

x(t) = C1e
λ1tv1 + · · ·+ Cne

λntvn.
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Example

Find the general solution of the system

ẋ1 = x1 + x2,

ẋ2 = 4x1 − 2x2.

The matrix of the system is A =

[
1 1
4 −2

]
. Its eigenvalues are the

solutions of

det(A− λI ) = (1− λ)(−2− λ)− 4 = λ2 + λ− 6 = 0,

so λ1 = −3 and λ2 = 2, and the corresponding eigenvectors are

v1 =
[
1 −4

]T
and v2 =

[
1 1

]T
.

The general solution of the system is

x(t) = C1e
−3t

[
1

−4

]
+ C2e

2t

[
1
1

]
.
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Example

Find the general solution of

ẋ1 = x2,

ẋ2 = −4x1.

The matrix of the system is A =

[
0 1

−4 0

]
. It has a conjugate pair of

complex eigenvalues and a corresponding conjugate pair of eigenvectors:

λ1,2 = ±2i , v1,2 =
[
1 ±2i

]T
.

The general solution is a family of complex valued functions

x(t) = C1e
2it

[
1
2i

]
+ C2e

−2it

[
1

−2i

]
(which is not very useful in modelling real-valued phenomena).
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Autonomous system: complex conjugate eigenvalues

Assume that the matrix of the system A has a complex pair of eigenvalues
λ1,2 = α± iβ and corresponding eigenvectors v1,2 = u ± iw .

The real and imaginary parts of the two complex valued solutions are:

e(α±iβ)t(u ± iw)

= eαt(cos(βt)± i sin(βt))(u ± iw)

= eαt [cos(βt)u − sin(βt)w ± i(sin(βt)u + cos(βt)w)] .

Any linear combination (with coefficients C1,C2 ∈ R) of these is a
real-valued solution, so the real-valued general solution is

x(t) = eαt [C1(cos(βt)u − sin(βt)w) + C2(sin(βt)u + cos(βt)w)] .
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Autonomous system: complex conjugate eigenvalues

Example

In the case of the previous example, λ1,2 = ±2i , i.e. α = 0 and β = 2, and

v1,2 =

[
1

±2i

]
⇒ u =

[
1
0

]
and w =

[
0
2

]
.

Hence, the general solution is

x(t) = C1

(
cos(2t)

[
1
0

]
− sin(2t)

[
0
2

])
+ C2

(
sin(2t)

[
1
0

]
+ cos(2t)

[
0
2

])
.
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Autonomous system: less than n eigenvectors

If A has less than n linearly independent eigenvectors, additional solutions
can also be obtained (e.g., with the use of Jordan form of A), but we will
not consider this case here.

The general solution of a system ẋ = Ax of n equations is of the form

x(t) = C1x
(1)(t) + . . .+ Cnx

(n)(t),

where x (1)(t), . . . , x (n)(t) are specific, linearly independent solutions.

For every eigenvalue λ ∈ R or a pair of eigenvalues λ = α± iβ we obtain as
many solutions as there are corresponding linearly independent eigenvectors.
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Adding initial conditions to an autonomous system
An initial condition x(t0) = x (0) gives a nonsingular system (if the vectors
x1(t0), . . . , xn(t0) are linearly independent) of n linear equations for the
constants C1, . . . ,Cn.

x (0) = C1x1(t0) + . . .+ Cnxn(t0).

This implies that a problem

ẋ = Ax , x(t0) = x (0)

has a unique solution for any x (0).

Example
The initial condition x (0) = x(0) =

[
0 5

]T
for the system in the first example

above gives the following system of equations for C1 and C2:

C1 + C2 = 0, −4C1 + C2 = 5,

so C1 = −1 and C2 = 1.
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Transformating DEs of higher order into 1st order ODEs
The differential equation of order 2

ẍ = f (t, x , ẋ) (55)

can be transformed into a system of two order 1 DE’s by introducing new
variables:

x1(t) = x(t),

x2(t) = ẋ(t).

Now DE (55) becomes

ẋ1(t) = x2(t),

ẋ2(t) = f (t, x1(t), x2(t)).

An initial condition
x(t0) = α0, ẋ(t0) = α1

is transformed into an initial condition[
x1(t0)
x2(t0)

]
=

[
α0

α1

]
.
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In the same way a differential equation of order n

x (n) = f (t, x , ẋ , . . . , x (n−1))

can be transformed into a system of n differential equations of order 1 by
introducing new dependent variables

x1 = x ,

x2 = ẋ ,

...

xn = x (n−1),

(56)

and hence (56) becomes:
ẋ1
ẋ2
...
ẋn

 =


x2
x3
...

f (t, x1, x2, . . . , xn)

 .
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Example: We are given the differential equation of order 2

2ẍ − 5ẋ + x = 0, (57)

with initial conditions

x(3) = 6, ẋ(3) = −1. (58)

We introduce new variables:

x1(t) = x(t),

x2(t) = ẋ(t),

and hence (57) becomes the system

ẋ1(t) = x2(t),

ẋ2(t) =
5

2
x2 −

1

2
x1.

An initial conditions (58) becomes

x1(3) = 6, x2(3) = −1.
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Numerical methods for a system of DEs

Numerical methods for a system of DEs work exactly in the same way as for
a single equation, with the exception that the unknown function is a vector
function

x(t) =
[
x1(t) · · · xn(t)

]T
.

Given the system with initial condition

ẋ =

 ẋ1
...
ẋn

 =

 f1(t, x1, . . . , xn)
...

fn(t, x1, . . . , xn)

 , x(t0) = x (0) =

 x
(0)
1
...

x
(0)
n

 ,

we construct a recursive sequence of points

ti = t0 + ih, x (i)
.
= x(ti ), i ≥ 0

where the vector x (i) is an approximation to the value of the exact solution
x(ti ), and h is the step size.
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Euler’s method and RK4

Euler’s method:

ti+1 = ti + h, x (i+1) = x (i) + hf (ti , x
(i)), i ≥ 0.

RK4 method:

ti+1 = ti + h, x (i+1) = x (i) + (k1 + 2k2 + 2k3 + k4)/6,

where

k1 = hf (ti , x
(i)),

k2 = hf (ti + h/2, x (i) + k1/2),

k3 = hf (ti + h/2, x (i) + k2/2),

k4 = hf (ti + h, x (i) + k3).
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Autonomous system of DE’s - general case
A system of DEs is autonomous if the function f : Rn → Rn does not
depend on t:

ẋ = f (x).

For an autonomous system, the tangent vector to a solution depends only
on the point x and is independent of the time t at which the solution
reaches a given point. In this case, the tangent vectors can be viewed as a
directional field in the space Rn.

In case of an autonomous system of 2 DE’s:

f = (f1, f2) : R2 → R2

ẋ = f1(x , y),

ẏ = f2(x , y),

gives a directional field in the (x , y) plane, which we call the phase plane of
the system.

The general solution is a family of parametric curves or trajectories which
respect the given directional field at every point (x , y).
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The points where f (x) = 0 are stationary points or equilibrium points of
the system.

At a stationary point x0 = x(t0), ẋ(t0) = 0, so x(t) = x0 represents a
constant, or equilibrium solution of the system.
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Real life example of autonomous system

The predator-prey or Volterra-Lotka model is a famous system of DE’s
proposed by Alfred J. Lotka (1920) for modelling certain chemical
reactions, and independently by Vito Volterra (1926) for dynamics of
biological systems. It was later applied in economics and is used in a
number of domains.

Two populations of species, for example rabbits and foxes, live together and
depend on each other.

The number of rabbits (the prey) at time t is R(t) and the number of foxes
(the predators) is F (t).

If they live apart, the rabbit, resp. fox, population grows, resp. declines,
with the exponential law:

Ṙ = kR, k > 0, resp. Ḟ = −rF , r > 0.
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If they live together, then interactions between rabbits and foxes cause a
decline in the rabbit population and a growth of the fox population.
This (basic) predator-prey model is the following:

Ṙ = kR − aRF , Ḟ = −rF + bFR, a, b > 0.

The system has two stationary or equilibrium points:

kR − aRF = −rF + bFR = 0 ⇒

⇒ R = F = 0 or R =
r

b
,F =

k

a
.

The meaning of these values is that the populations (ideally) coexist
peacefully, with no fluctuations in the population sizes.
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The left figure below shows the directional field and several solutions for the
system

Ṙ = 0.3R − 0.004RF Ḟ = −0.2F + 0.001FR

in the (R,F ) plane.

The right figure shows dynamics of the population sizes F (t) and R(t) with
respect to t:
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On the figure below, the blue curve is the exact solution and the black dots
are approximations for function values for the system with initial condition

R(0) = 500,F (0) = 50

using Euler’s method with step size h = 0.5:

Example: Click
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The dynamics of systems of 2 equations

For an autonomous linear system

ẋ1 = a11x1 + a12x2, ẋ2 = a21x1 + a22x2,

the origin (0, 0) is always a stationary point, i.e., an equilibrium solution.

The eigenvalues of the matrix

A =

[
a11 a12
a21 a22

]
determine the type of the stationary point (0, 0) and the shape of the phase
portrait.

We will assume that detA ̸= 0. Let λ1, λ2 be the eigenvalues of A. We also
assume that there exist two linearly independent vectors v1, v2 of A (even if
λ1 = λ2).
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Case 1: λ1, λ2 ∈ R

The general solution is

x(t) = C1e
λ1tv1 + C2e

λ2tv2.

▶ If C1 = 0, the trajectory x1(t) is a ray in the direction of v2 if C2 > 0,
or −v1 if C2 < 0.

▶ Similarly, if C2 = 0 the trajectory x2(t) is a ray in the direction of v2 or
−v2.

▶ The behaviour of other trajectories depends on the signs of λ1 and λ2.
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Subcase 1.1: 0 < λ1 < λ2

▶ as t → ∞, x(t) asymptotically approaches the solution ±eλ2tv2,

▶ as t → −∞, x(t) asymptotically approaches the solution ±eλ1tv1.

The point (0, 0) is a source.
Example. The general solution of the system ẋ1 = 3x1 + x2, ẋ2 = x1 + 3x2 is

x(t) = C1e
4t
[
1 1

]T
+ C2e

2t
[
−1 1

]T
.

Example: Click
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Subcase 1.2: λ2 < λ1 < 0

▶ as t → ∞, x(t) asymptotically approaches the solution ±eλ1tv2,

▶ as t → −∞, x(t) asymptotically approaches the solution ±eλ2tv1.

The point (0, 0) is a sink.

Example. The general solution of the system ẋ1 = −3x1 − x2, ẋ2 = −x1 − 3x2 is

x(t) = C1e
−4t

[
1 1

]T
+ C2e

−2t
[
−1 1

]T
.

Example: Click
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Subcase 1.3: λ1 < 0 < λ2

▶ as t → ∞, x(t) asymptotically approaches the solution ±eλ2tv2,

▶ as t → −∞, x(t) asymptotically approaches the solution ±eλ1tv1.

The point (0, 0) is a saddle.
Example. The general solution of the system ẋ1 = x1 − 3x2, ẋ2 = −3x1 + x2 is

x(t) = C1e
−2t

[
1 1

]T
+ C2e

4t
[
1 −1

]T
.

Example: Click
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Subcase 2.1: λ1,2 = α± iβ, α ̸= 0

The general solution is

x(t) = eαt [(C1 cos(βt) + C2 sin(βt))u + (−C1 sin(βt) + C2 cos(βt))w ] .

Hence,
▶ if α < 0, x(t) spirals towards (0, 0) as t → ∞, and
▶ if α > 0, x(t) spirals away from (0, 0) as t → ∞.

The point (0, 0) is a spiral sink in the first case and a spiral source in the
second case.

Example

ẋ1 = −3x1 + 2x2, ẋ2 = −x1 − x2

x(t) = e−2t ·(
(C1 cos t + C2 sin t)

[
2
1

]
+

(−C1 sin t + C2 cos t)

[
0
1

])
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Subcase 2.2: λ1,2 = ±iβ, α ̸= 0

The trajectories are periodic with period 2π/β, i.e. the point x(t) circles
around (0, 0).

The point (0, 0) is a center.

Example

ẋ = v , v̇ = −ω2x

x(t) =

(C1 cos(ωt) + C2 sin(ωt))

[
1
0

]
+

(−C1 sin(ωt) + C2 cos(ωt))

[
0
1

]
Examples: Click Click
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Nonlinear autonomous systems of equations

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2)

If a = (a1, a2) is a critical point, that is,

f1(a1, a2) = f2(a1, a2) = 0,

then the behaviour of trajectories close to a is approximated by trajectories
of the linearization of the system at the point a:

ẋ1
.
=

∂f1
∂x1

(x1 − a1) +
∂f1
∂x2

(x2 − a2), ẋ2
.
=

∂f2
∂x1

(x1 − a1) +
∂f2
∂x2

(x2 − a2).

This is a linear homogeneous system with coefficient matrix the Jacobian
matrix of the vector function f (x):

ẋ
.
= Df (a)(x − a) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f1
∂x2

]
(x − a).

The critical point is classified as a source, sink, saddle, spiral source, spiral
sink or center depending on the eigenvalues of Df (a).
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In addition to critical points, that is, equillibrium solutions, a plane
nonlinear system (that is, a nonlinear system of two differential equations)
can also have limit cycles.

A limit cycle is a periodic solutions x∞(t) such that for initial conditions
x(t0) = x0 in a certain domain the corresponding solutions x(t)

▶ either asymptotically tend towards x∞(t) as t → ∞ – in this case x∞
is an attracting limit cycle, or

▶ x(t) → x∞(t) as t → −∞ – in this case x∞ is a repelling limit cycle.

Systems of more than two differential equations can exhibit much more
complex, chaotic behaviour.

Example: Click
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Differential equations of order 2

ẍ = f (t, x , ẋ)

The general solution is a two-parametric family

x = x(t,C1,C2).

A particular solution is given by specifying

▶ initial conditions: x(t0) = α0, ẋ(t0) = α1,
where the values of the solution and its derivative are given at some
initial time t0
or

▶ boundary conditions: x(a) = x0, x(b) = x1
where values of the solution at different times a, b are given (i.e., on
the boundary of some interval [a, b])

183/206



Differential equations of order n

x (n) = f (t, x , ẋ , . . . , x (n−1))

The general solution is an n-parametric family

x = x(t,C1, . . . ,Cn).

A particular solution is given by

▶ initial conditions: x(t0) = α0, . . . x
(n−1)(t0) = αn−1

where the values of the solution and its first (n − 1) derivatives are
given at some initial time t0
or

▶ boundary conditions
where values of the solution or its derivatives are given in different
times.
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Linear DE’s of order n

A linear DE (LDE) of degree n is of the form

x (n) + an−1(t)x
(n−1) + · · ·+ a0(t)x = f (t). (59)

The equation is

▶ homogeneous if f (t) = 0, and

▶ nonhomogeneous if f (t) ̸= 0.

▶ The general solution of the homogeneous part is the family of all linear
combinations

y(t) = C1x1(t) + · · ·+ Cnxn(t)

of n linearly independent solutions x1(t), . . . , xn(t).

▶ If the coefficients a1(t), . . . , an(t) are continuous functions, then for
any α0, . . . , αn there exists exactly one solution satisfying the initial
condition

x(t0) = α0, ẋ(t0) = α1, . . . , x (n−1)(t0) = αn.
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LDEs with constant coefficients
Assume that the coefficient functions a1(t), . . . an(t) in a homogeneous
LDE are constant:

x (n) + an−1x
(n−1) · · ·+ a0x = 0, a1, . . . an ∈ R (60)

Translating (60) to the system by the usual trick of introducing new
variables

x1 = x , x2 = x ′1, x3 = x ′2, · · · , xn = x ′n−1,

(60) becomes
x ′n = −a0x1 − a1x2 − . . .− an−1xn,

or matricially x⃗ ′ = Ax⃗ :

x⃗ ′(t) =



0 1 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · 0 1

−a0 −a1 · · · · · · −an−2 −an−1


x⃗(t)
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▶ The solutions to this system are of the form

x(t) = pk(t)e
λtv ,

where λ is the eigenvalue of A, pk(t) is a polynomial of degree k in t
and v is the generalized eigenvector. (This follows most easily by the
use of the Jordan form of the matrix.)

▶ In particular, if there are n linearly independent eigenvectors of the
matrix A, then all polynomials pk are constants and generalized
eigenvectors are usual eigenvectors.

▶ By a simple calculation of expressing the determinant of A− λI
according to the coefficients and cofactors of the last row, it turns out
that the eigenvalues of A are precisely the roots of the characteristic
polynomial corresponding to (60):

P(λ) := λn + an−1λ
n−1 + · · · a1λ+ a0. (61)

▶ A (trivial) fact with a nontrivial proof, called the fundamental theorem
of algebra, states that a polynomial of degree n has exactly n roots,
counted by multiplicity. In case the matrix A is real, these roots are
real or complex conjugate pairs.
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▶ From the roots of the characteristic polynomial (61), n linearly
independent solutions of the LDE can be reconstructed.

▶ For every real root λ ∈ R,

x(t) = eλt

is a solution of the homogeneous LDE.
▶ For a complex conjugate pair of roots λ = α± iβ, the real and

imaginary parts of the complex-valued exponential functions

e(α±iβ)t = eαt(cos(βt) + i sin(βt))

are two linearly independent solutions

x1 = eαt cos(βt), x2 = eαt sin(βt).

Proposition

If a root (or a complex pair of roots) λ has multiplicity k > 1, then it can
be shown that

eλt , teλt , . . . tk−1eλt

are all linearly independent solutions.
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Proof of proposition
Let us prove the last fact by an interesting trick. We introduce the operator

L : C(n)(I ) → C(I )

L(u) = u(n) + an−1u
(n−1) · · ·+ a0u,

where C(n)(I ) stands for the vector space of n-times continuously differentiable functions
on the interval I and C(I ) stands for the vector space of continuous functions on I .

Let λ0 be the root of the characteristic polynomial (61) of multiplicity k, i.e.,

P(λ) = (λ− λ0)
kQ(λ).

Let 0 ≤ q ≤ k by an integer. We will check that tqeλt solves (60).
Notice that

tqeλt =
dq

dλq
eλt .

For ease of notation we define an := 1. We have that:

L(tqeλt) =
n∑

i=0

ai

(
dq

dλq
eλt
)(i)

=
n∑

i=0

ai
d i

dt i

(
dq

dλq
eλt
)

=
dq

dλq

(
n∑

i=0

ai
d i

dt i
eλt
)

=
dq

dλq

(
n∑

i=0

aiλ
ieλt

)
=

dq

dλq
(P(λ)eλt).
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Since
dq

dλq
(P(λ)eλt) =

q∑
i=1

d i

dλi
(P(λ)) · Qi (t, λ),

where Qi (t, λ) are functions of t, λ and

d i

dλi
(P(λ0)) = 0, for i = 0, . . . , q,

it follows that
L(tqeλ0t) = 0.
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Test for linear independence of solutions

Let x1(t), . . . , xn(t) be the solutions of the homogeneous part of (59) and
form a matrix

W (x1(t), . . . , xn(t)) :=


x1(t) . . . xn(t)
ẋ1(t) . . . ẋn(t)
...

. . .
...

x
(n−1)
1 (t) . . . x

(n−1)
n (t)


We call the determinant

ϕ(t) = detW (x1(t), . . . , xn(t)) : I → R

the Wronskian determinant of W (x1(t), . . . , xn(t)), where I is the interval
on which t lives.

Theorem (Existence and uniqueness of solutions)

If x1(t), . . . , xn(t) are solutions of a LDE with continuous coefficient
functions a1(t), . . . an(t), then their Wronskian is either identically equal to
0 or nonzero at every point. In other words, if W (x1, . . . , xn) has a zero at
some point t0, then it is identically equal to 0.
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Proof of theorem
Let πn be the set of all permutations of the set {1, . . . , n}. Now we differentiate ϕ(t) and
obtain

ϕ′(t) =

(∑
σ∈πn

xσ(1)x
(1)
σ(2) · · · x

(n−1)
σ(n)

)′

(t)

=
∑
σ∈πn

((
xσ(1)

)′
(t)x

(1)
σ(2)(t) · · · x

(n−1)
σ(n) (t)

+ xσ(1)(t)
(
x
(1)
σ(2)

)′
(t) · · · x (n−1)

σ(n) (t) + · · ·

+xσ(1)(t)x
(1)
σ(2)(t) · · ·

(
x
(n−1)
σ(n) (t)

)′)
=

(∑
σ∈πn

x
(1)
σ(1)(t)x

(1)
σ(2)(t) · · · x

(n−1)
σ(n) (t)

)
+(∑

σ∈πn

xσ(1)(t)x
(2)
σ(2)(t)x

(2)
σ(3)(t) · · · x

(n−1)
σ(n) (t)

)
+

· · ·+

(∑
σ∈πn

xσ(1)(t)x
(1)
σ(2)(t) · · · x

(n−2)
σ(n) (t)x

(n)
σ(n)(t)

)
.
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Now notice that the first n − 1 summand are the determinants of the matrices

x1(t) . . . xn(t)
...

. . .
...

x
(i)
1 (t) . . . x

(i)
n (t)

x
(i)
1 (t) . . . x

(i)
n (t)

...
. . .

...

x
(n−1)
1 (t) . . . x

(n−1)
n (t)


(62)

and hence are equal to 0.
For the last summand use the initial DE (59) to express

x
(n)
σ(n) := −an−1(t)x

(n−1)
σ(n) − · · · − a0(t)xσ(n).

The summands of the from −ai (t)x
(i)
σ(n) for i < n − 1 give 0 terms in the sum

∑
σ∈πn

since the sum is just the −ai (t) multiple of the determinant of the form (62), while the

term −an−1(t)x
(n−1)
σ(n) gives

−an−1(t)ϕ(t).

It follows that ϕ(t) satisfies the DE

ϕ′(t) = −an−1(t)ϕ(t).

The theorem follows by noticing that the solution of this DE is

ϕ(t) = ke−
∫
an−1(t)dt , where k ∈ R.
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Second order homogeneous LDE with constant coefficients

We are given a DE
aẍ + bẋ + cx = 0,

where a, b, c ∈ R are real numbers. We know from the theory above that

the general solution is

x(t,C1,C2) = C1x1(t) + C2x2(t),

where C1,C2 ∈ R are parameters and

1. x1(t) = eλ1t and x2(t) = eλ2t if the characteristic polynomial has two
distinct real roots,

2. x1(t) = eαt cosβt and x2(t) = eαt sinβt if the characteristic
polynomial has a complex pair λ12 = α± iβ of roots, and

3. x1(t) = eλt , x2(t) = teλt if the characteristic polynomial has one
double real root.
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Nonhomogeneous LDEs
We are given the nonhomogeneous LDE

x (n) + an−1(t)x
(n−1) + · · ·+ a0(t)x = f (t),

where f : I → R is a nonzero function on the interval I . The following
holds:

▶ If x1 and x2 are solutions of the nonhomogeneous equation, the
difference x1 − x2 is a solution of the corresponding homogeneous
equation.

▶ The general solution is a sum

x(t,C1,C2) = xp + xh = xp + C1x1 + · · ·+ Cnxn,

where xp is a particular solution of the nonhomogeneous equation and
x1, . . . , xn are linearly independent solutions of the homogeneous
equation.

▶ The particular solution can be obtained using the method of
“intelligent guessing” or the method of variation of constants.
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The method of “intelligent guessing” typically works if the function f (t)
belongs to a class of functions that is closed under derivations, like
polynomials, exponential functions and sums of these.

Example (ẍ + ẋ + x = t2)
We are guessing that the particular solution will be of the form

xp(t) = At2 + Bt + C .

We have that
ẋp(t) = 2At + B, ẍp(t) = 2A,

and so

ẍ + ẋ + x = 2A+ (2At + B) + (At2 + Bt + C )

= At2 + (2A+ B)t + (2A+ B + C )

The initial DE gives us a linear system in A,B,C :

A = 1, 2A+ B = 0, 2A+ B + C = 0

with the solution A = 1,B = −2,C = 0. Hence, xp(t) = t2 − 2t.
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Example (ẍ − 3ẋ + 2x = e3t)
We are guessing that the particular solution will be of the form

xp(t) = Ae3t .

We have that
ẋp(t) = 3Ae3t , ẍp(t) = 9Ae3t ,

and so

ẍ − 3ẋ + 2x = 9Ae3t − 3(3Ae3t) + 2Ae3t = 2Ae3t

The initial DE gives us an equation 2A = 1 and hence, xp(t) =
1
2e

3t .
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Example (ẍ − x = et)
The particular solution will not be of the form xp(t) = Aet , since this is a solution
of the homogeneous equation, we are guessing that the correct form in this case is

xp(t) = Atet .

We have that
ẋp(t) = A(et + tet), ẍp(t) = A(2et + tet),

and so

ẍ − x = A(2et + tet)− Atet = 2Aet .

The initial DE gives us an equation 2A = 1 and hence, xp(t) =
1
2 te

t .
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Example (ẍ + x = 1
cos t

)

Let us first solve the homogeneous part ẍ + x = 0. The characteristic polynomial
is p(λ) = λ2 + 1 with zeroes

λ1,2 = ±i = cos t ± i sin t.

Hence, real solutions of the DE are

x1(t) = cos t and x2(t) = sin t. (63)

So the general solution to the homogeneous part is

x(t) = C1x1(t) + C2x2(t), where C1,C2 ∈ R are constants.

Now we are searching for the particular solution xp(t) of the form

xp(t) = C1(t)x1(t) + C2(t)x2(t).
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Thus,
ẋp(t) = Ċ1(t)x1(t) + C1(t)ẋ1(t) + Ċ2(t)x2(t) + C2(t)ẋ2(t). (64)

We force an equation
Ċ1(t)x1(t) + Ċ2(t)x2(t) = 0. (65)

Differentiang (64) further under the assumption (65) we get

ẍp(t) = (Ċ1(t)ẋ1(t) + C1(t)ẍ1(t)) + (Ċ2(t)ẋ2(t) + C2(t)ẍ2(t)). (66)

Plugging this into the initial DE and using that x1, x2 are solutions of ẍ + x = 0

Ċ1(t)ẋ1(t) + Ċ2(t)ẋ2(t) =
1

cos t
. (67)

Expressing Ċ2(t) from (65) and plugging into (67) we get

Ċ1(t)ẋ1(t)−
Ċ1(t)x1(t)

x2(t)
ẋ2(t) = Ċ1(t)

ẋ1(t)x2(t)− x1(t)ẋ2(t)

x2(t)
=

1

cos t
. (68)

Using (63) in (68) we get

Ċ1(t) = − sin t

cos t
. (69)

Hence,

C1(t) = −
∫

sin t

cos t
dt = −

∫
1

u
du = − log |u| = − log | cos t|,

where we used the substitution u = cos t.
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Using (69) in (65) we get
Ċ2(t) = 1. (70)

Hence,
C2(t) = t.

So,
xp(t) = − log | cos t| · cos t + t sin t.

The complete solution to DE is

x(t) = C1 cos t + C2 sin t − log | cos t| · cos t + t sin t,

where C1,C2 are parameters.
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Vibrating systems

There are many vibrating systems in many different domains. The
mathematical model is always the same, though. We will have in mind a
vibrating mass attached to a spring.

Case 1: Free vibrations without damping

Let x(t) denote the displacement of the mass from the equillibrium position.
▶ According to Newton’s second law of motion

mẍ =
∑

Fi ,

where Fi are forces acting on the mass.
▶ By Hooke’s law, the only force acting on the mass pulls towards the

equilibrium, its size is proportional to the displacement and the
direction is opposite

F = −kx(t), k > 0.

▶ So the DE in this case is

mẍ + kx = 0 .
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▶ The characteristic equation

mλ2 + k = 0

has complex solutions λ = ±ωi , ω2 = k/m.

▶ The general solution is

x(t) = C1 cosωt + C2 sinωt.

▶ So the solutions x(t) are periodic. The equillibrium point (0, 0) in the
phase plane (x , v) is a center.
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Case 2: Free vibrations with damping
We assume a linear damping force

Fd = −βẋ ,

so the DE is

mẍ + βẋ + kx = 0 , where m, β, k > 0.

Depending on the solutions of the characteristic equation there are three
cases:

▶ Overdamping when D = β2 − 4km > 0 and x(t) = C1e
λ1t + C2e

λ2t ,
λ1,2 < 0. The mass slides towards the equilibrium. The point (0, 0) in
the (x , v) plane is a sink.

▶ Critical damping when D = 0 and x(t) = C1e
λt + C2te

λt , λ < 0. The
point mass slides towards the equillibrium after, possibly, one swing.
The point (0, 0) in the (x , v) plane is a sink,

▶ Damped vibration when D < 0 and x(t) = eαt(C1 cosβt + C2 sinβt).
The mass oscillates around the equillibrium with decreasing
amplitudes. The point (0, 0) is a spiral sink.
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Case 3: Forced vibration without damping

In addition to internal forces of the system there is an additional external
force f (t) acting on the system, so

mẍ + kx = f (t) .

The general solution is of the form

x(t,C1,C2) = C1 cos(ωt) + C2 sin(ωt) + xp(t),

where xp is a particular solution of the nonhomogeneous equations.

Example

Let f (t) = a sinµt.

Using the method of intelligent guessing,

▶ if µ ̸= ω, then xp(t) = A sinµt + B cosµt

▶ if µ = ω, then xp = t(A sinωt + B cosωt), so the solutions of the
equation are unbonded and incerase towards ∞ as t → ∞ – the well
known phenomenion of resonance occurs.
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Case 4: Forced vibration with damping:

mẍ + βẋ + kx = f (t) .

Example

Let f (t) = a sinµt.
The general solution is of the form

x(t,C1,C2) = xh + xp = C1x1(t) + C2x2(t) + xp(t)

where xp(t) is of the form A sinµt + B cosµt, and the two solutions x1 and
x2 both converge to 0 as t → ∞. For any C1,C2 the solution x(t,C1,C2)
asymptotically tends towards xp(t).
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