
Ray tracing in Non-euclidean spaces
BACKGROUND

Ray tracing is a popular algorithm used in computer graphics to simulate realistic lighting of
scenes. It is based on the idea of tracing a ray of light along a scene, calculating its intersection
with objects and bouncing it off in a different direction. Normally we use this algorithm in
the usual Euclidean space as it represents the real world. However, ray tracing can also be
implemented in other (non-Euclidean) spaces to produce interesting visual results. This will be
the main task of this project.

Ray tracing algorithm. For the sake of simplicity we will represent our scene with surfaces
given by the equations of the form

f(x, y, z) = 0.(1)

Example 1. Such surfaces are:
(1) Planes given by ax+ by + cz = d, where a, b, c, d ∈ R.

(2) Spheres given by (x− x0)
2 + (y− y0)

2 + (z− z0)
2 = r2, where (x0, y0, z0) ∈ R3 is the

center of the sphere and r > 0 is the diameter. ■

To trace a light ray we choose a starting point T0(x0, y0, z0) ∈ R3 and a direction v⃗ =
(a, b, c) ∈ R3. A ray is then represented with the following system of equations:

x(t) = x0 + at,

y(t) = y0 + bt,

z(t) = z0 + ct,

where t ≥ 0 is a parameter. We start with t = 0 and increase it continuously in small steps
to simulate the movement of the ray. An intersection with an object given by the equation 1
occurs when the sign of f changes. If we find a point of intersection on an interval [t1, t2], we
can find a more precise point of intersection using the Newton method, for example. We solve
the equation We solve the equation

g(t) := f(x0 + at, y0 + bt, z0 + ct) = 0

with the initial approximation t = (t1 + t2)/2. The derivative of g that is needed for Newton’s
method is

g′(t) = afx(x0 + at, y0 + bt, z0 + ct)

+ bfy(x0 + at, y0 + bt, z0 + ct)

+ cfz(x0 + at, y0 + bt, z0 + ct),

where fx, fy and fz are partial derivatives of f with respect to x, y and z, respectively.

Implementation of ray tracing. We define the position and viewing direction of a “camera”
(the point from which we view the scene) and the positions of “pixels” distributed on a plane
located at a distance d in front of the camera position. d determines the field of view. We send a
ray from each pixel into the scene, and color it depending on the intersection points with objects
(or with a default color if there is no intersection point). We can also add a light source to the
scene, which can be represented by a single point (this type of light is called point light). When
we get an intersection point, we send another ray from the intersection point towards the light
source to see if there is another object in the way. If this is the case, the original intersection
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FIGURE 1. Flat torus T2
f .

FIGURE 2. A ray in the flat torus T2
f .

point is in shadow and we can color the pixel with a darker color. This creates shadows that
give the scene more realism.

Ray tracing in non-Euclidean spaces.

Flat torus. Flat torus T2
f is a simple non-Euclidean space that we get if we associate (“glue”

together) opposite edges of a unit square [0, 1]× [0, 1] ⊂ R2 to get the usual torus like shown in
the figure 1.

If we imagine a ray traveling in the flat torus, it would travel the same as in the Euclidean
space (hence the word “flat” in the name), except it would get “mapped” to the opposite edge
when reaching the border, like shown in the figure 2.

We can extend T2
f with another dimension to get the 3-dimensional flat torus T3

f . Here we
associate opposite faces of the unit cube instead of the edges.

2-sphere. For ray tracing on the 2-sphere S2 living in R3 we need to trace a ray along the surface
of a sphere. For this we will introduce geodesics, which are the straightest paths between points
on a surface. In general, this does not coincide with the shortest paths, however in case of the
sphere it turns out that one of the two geodesics is also a shortest path. For a plane this would
be a line and for a sphere it would be a curve on its surface.

Let us have a sphere in R3 parametrized with coordinates (u, v) ∈ R2 as

X = cos(v) sin(u),

Y = sin(v) sin(u),

Z = cos(u).

We choose a starting point on the sphere P = (u0, v0) ∈ R2 and some direction (v1, v2) ∈ R2.
We derive a system of differential equations (DEs) that allows us to make a small step along a
geodesic on the sphere. The system of DEs is

d2u

dt2
− cos(u) sin(u)

dv

dt

dv

dt
= 0

d2v

dt2
− 2 cot(u)

du

dt

dv

dt
= 0,

(2)
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where (u, v) is the current position,
(
du

dt
,
dv

dt

)
is the direction of travel and

(
d2u

dt2
,
d2v

dt2

)
is the

“speed” of travel. If you are interested in the full derivation take a look at the videos [1, 2].
We solve the system of equations 2 with a numeric method, for example Euler’s method.

However, for this aim we first need to transform it into a system of four first order differential
equations.

To perform ray tracing on the 2-sphere use the following steps:
(1) Transform a point from R3 to the uv-plane.

(2) Perform one step of Euler’s method on the system 2 using the current point and the

initial approximation
(
du

dt
,
dv

dt

)
= (1, 0).1

(3) Transform the new point from uv-plane to R3.

(4) Calculate intersections as described before.

Here are some additional tips you should know:
• To achieve a true 3-dimensional rendering of the scene you should trace rays along

different spheres (one sphere for each row of pixels should work well).

• A ray never leaves a certain sphere, so it might also never hit a light source even if it is
not obstructed by another object. To avoid this we simplify the problem by tracing rays
towards light sources in the standard Euclidean fashion.

TASK

(1) Implement the basic ray tracing algorithm. Your program should be able to render a
simple scene with basic shading as described above. Any other extensions, such as
reflections and soft shading, are optional, since they are not the focus of this project.

(2) Implement ray tracing for the 3-dimensional flat torus T3
f .

(3) Implement ray tracing for the 2-sphere S2. Suggestion: first just try to plot one geodesic
using the method described above and then move to ray tracing.

(4) Render a scene in Euclidean space and the presented non-Euclidean spaces and visu-
ally compare the results. What are the characteristics of each space? If you find any
interesting behaviours report on them and try to explain them.

(5) Optional: implement ray tracing for some other “flat” space. One idea is the mirrored
cube, where we take the unit cube, think of its faces as mirrors and place the scene inside
of it. You can also come up with a space of your own and produce some interesting
results.
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1Euler’s method tends to make big numerical errors when using other initial approximations. If we use an
adaptive method like Dormand-Prince 5 we can choose any direction, but you don’t need to do that for this project.
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