
Low-Rank Matrix Completion problem
Truncated nuclear norm minimization algorithm

Background

The problem of recovering a matrix from partial observations, called a ma-
trix completion (MC) problem, has attracted much attention in the last
two decades due to a variety of applications, such as recommendation sys-
tems, image processing, localization of IoT networks, etc. Given a partially
de�ned matrix

Mo =


0 1 ? 3
? 2 3 ?
1 ? 1 1
2 1 5 ?

 ,

the MC problem is to determine the unknown entries ? such that one of the
criteria is met:

1. The rank of the completion M is the lowest possible.

2. The sum of the singular values ‖M‖∗ of M , called a nuclear norm, is
the smallest possible.

In recommendation systems, such as Net�ix, the rows of Mo represent users,
the columns represent movies, and the ij entry represents user i's rating of
movie j. Since users tend to share common interests, they will give similar
ratings to movies, resulting in a completion M with low rank or low kernel
norm. Based on this completion, the system then recommends a list of movies
that the user might be interested in based on his previous ratings.

In image restroration when there is dirt present in the two-dimensional
image represented by a matrix containing values of pixels, the idea is to use
clean pixels as observed entries of the image and restore the image as a low
rank or low nuclear norm matrix completion problem.

Since optimizing rank is a very hard problem, while optimizing the nu-
clear norm is more tractable, many MC algorithms are designed to solve the
nuclear norm minimization (NNM) problem:

min
X∈Rn×m

‖X‖∗,

subject to PΩ(X) = PΩ(Mo),
(1)

where

PΩ(A) =

{
aij, (i, j) ∈ Ω,
0, (i, j) /∈ Ω,

1



is a projection of the matrix A to
is a projection of the matrix A to entries from the observed set Ω ⊆

{(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and Mo is a given observation matrix. In case
of large matrices (e.g., for recommendation systems) the problem (1) requires
huge computational burden and thus require further reductions such as the
one proposed in [1]:

min
X∈Rn×m

‖X‖r

subject to PΩ(X) = PΩ(Mo),
(2)

where ‖X‖r =
∑n

i=r+1 σi(X) is the sum of all but the �rst r largest singular
values of X.

The algorithms [1, Algorithm 1 and 2, p. 20], called truncated nu-
clear norm minimization (TNNR-ADMM), which solve the optimiza-
tion problem in (2), rely on the truncated singular value decomposition of
the iterate at each step of the procedure until convergence.

Task

1. Study the algorithm and brie�y explain the idea for each of the steps.

FOOT Here you are not expected to reproduce the proofs from [1],
only to understand the idea behind each step of the algorithm

2. Implement the algorithm and try it out on the image reconstruction
problem on an image of your choice that is noisy with the text written
over it, and then reconstruct the original content as an NNM problem.
See [1, Figure 7, p. 2127].

3. Present some experimental results on the ratio of text noise to still get
a good reconstruction.
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