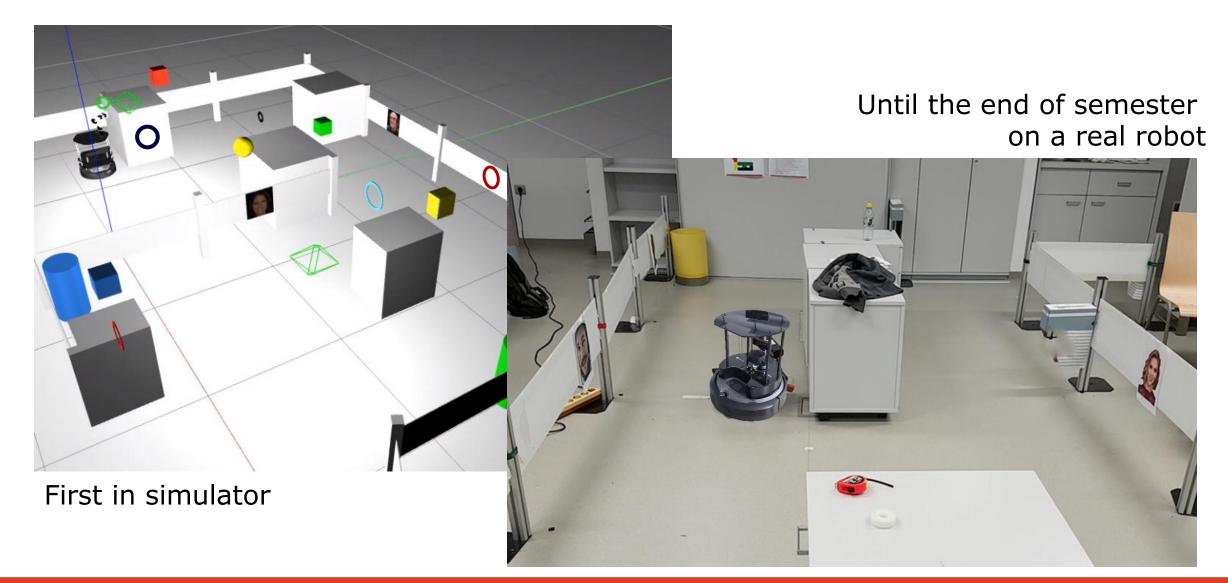
Development of intelligent systems (RInS)

Task 1: Autonomous navigation and human search


Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

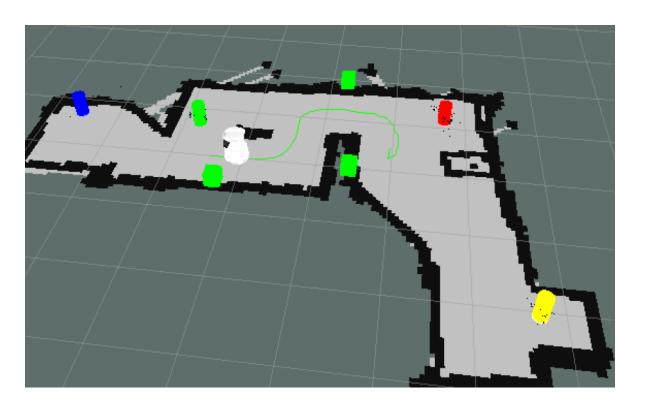
Academic year: 2023/24

Evaluation rules

- Setup:
 - fenced area
 - three printed faces at random places
 - starting position
- Task:
 - build the map of the competition area
 - search the space and look for faces
 - when a face is detected pass by or approach (and greet) the face
 - when all three faces are detected, stop
 - do not redetect the same face
 - do not have false detections
- Goals:
 - the robot should detect as many faces as possible
 - the robot should not detect something else as a face
 - perform the task as fast as possible

Evaluation setup

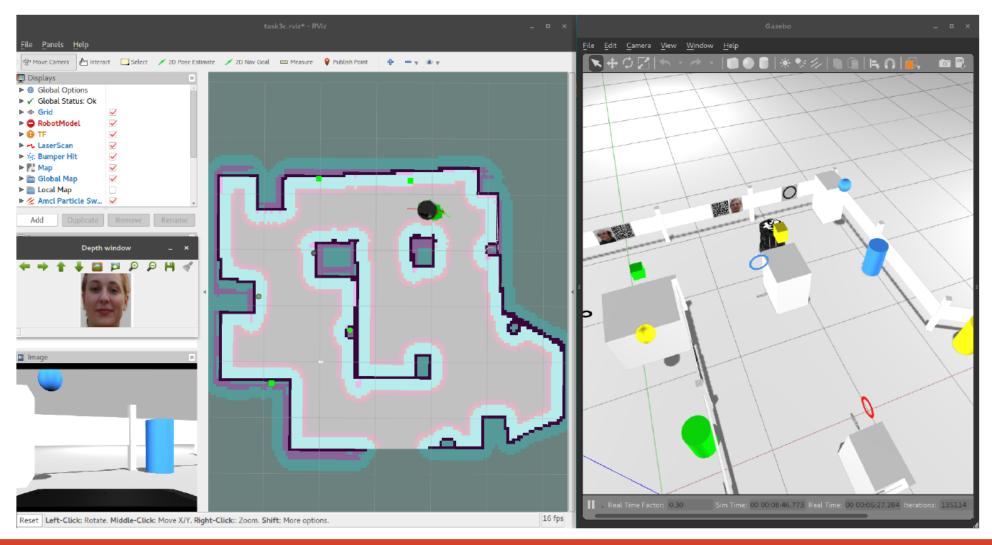
Evaluation protocol


- The evaluation course will be set up in advance
- The teams will be allowed to build the map in advance
- The faces will be positioned on the day of the evaluation
- The positions of the faces should not be hand coded
- The robot search goal positions can be hand coded
- The robot has to operate completely autonomously
- The teams will be allowed to tune the parameters
- The teams should be ready before the start of evaluation
- Every team will be able to run their robot twice
- The evaluation in similation will be held on 27. 3.
- The performance of a real robot shuld be presented until 31. 5.

Evaluation criteria

- Measuring:
 - number of faces correctly detected
 - number of faces correctly passed by
 - number of faces correctly approached (and greeted)
 - number of redetected faces
 - number of false detections
 - the time until the robot stops
- But also:
 - Robustness of the performance
 - Repeatability
 - Innovation
 - Clarity of demonstration
 - Elegance of solution
- Scoring:
 - T1 (in simulation): 10 points max
 - T1R (on real robot): 15 points max

Demonstration


- Demonstrate what is going on in the robot
 - visualisation of detected locations
 - mark locations in RViz
 - verbalisation of detections
 - simple speech synthesis (greeting)

Presentation

• (Gazebo), RVIZ, camera view as well as images of detected faces should be shown

Tasks

System setup	
 Running ROS 	Task 1
 Tele-operating TurtleBot 	Task 2
	Task 3
 Autonomous control of the mobile platform 	
 Acquiring images and 3D information 	
 Simultaneous mapping and localization (SLAM) 	
 Path planning, obstacle avoidance, approaching 	
 Advanced fine manoeuvring and parking 	
 Intelligent navigation and exploration of space 	
Advanced perception and cognitive capabilities	
 Detection of faces, circles, 3D rings, 3D cylinders, surface 	e defects
 Recognition of colour, faces 	
 Basic manipuation and visual servoing 	
 Speech synthesis, speech recognition, dialogue processin 	ig (reading QR codes)

Belief maintenance, reasoning, planning

Task 1 goals

- The main goals of the first task are:
 - to learn how to use ROS
 - to get familiar with the hardware
 - to set up the mobile platform (software and hardware)
 - to learn how to build a map
 - to learn how to use a map
 - to learn how to set a goal
 - to learn to instruct the robot to go to the goal position
 - to use LIDAR
 - to use RGB camera
 - to learn how to relate points in different coordinate frames
 - to robustly detect faces
 - to search the space

