Development of intelligent systems (**RInS**)

Task 2: Parking

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

Academic year: 2023/24

Rings and cylinders

- Four rings of different colours and different sizes
- Circles on the floor
- (Four cylinders of different colours)

Parking robot

- Additional camera pointed towards the floor
- You can choose whether in front or in the back of the robot
- Park in the circular parking place

Evaluation setup

in simulation...

Evaluation rules

- Setup:
 - fenced competition area
 - three rings of different sizes and colours at random places
 - three cylinders of different colours at random places
 - three circles of the same size at different positions
- Task:
 - build the map of the competition area
 - search the space and look for the rings (and cylinders)
 - recognize and say the colour of the rings (and cylinders)
 - approach the green ring
 - park into the circular parking space marked below the green ring
- Goals:
 - the robot should detect as many rings as possible
 - (the robot should detect as many cylinders as possible)
 - the robot should park as accurately as possible (with the circle)
 - perform the task as fast as possible

 The robot should be positioned completely within the boundaries of the circular parking space

Evaluation protocol

- The evaluation course will be set up in advance
- The teams will be allowed to build the map in advance
- The rings and cylinders will be positioned on the day of the evaluation
- The final parking place will be drawn on the day of the evaluation
- The robot has to operate completely autonomously
- The teams will be allowed to tune the parameters
- (You should preferably not manually set the goals for exploration of space)
 - It is therefore advisable to implement automatic exploration of space
- Detection of rings (and their colours) is mandatory
 - (detection of cylinders (and their colours) is recommended, but not mandatory)

Evaluation

- Measuring:
 - number of rings correctly detected (up to 3)
 - number of correctly recognized colours of the rings (up to 3)
 - (number of cylinders correctly detected (up to 3))
 - (number of correctly recognized colours of the cylinders (up to 3))
 - parking accuracy
 - number of false detections
 - the speed of execution
- But also:
 - Exploration strategy
 - Robustness of the performance
 - Repeatability
 - Innovation
 - Clarity of demonstration
 - Elegance of solution

Demonstration

- Demonstrate what is going on in the robot
 - visualisation of deteted locations
 - mark locations in RViz
 - verbalisation of detections
 - simple speech synthesis

Presentation

- Gazebo, RVIZ, camera view as well as images of detected rings should be shown
- Close view of the approaching events and parking

Tasks

 System setup 	
Running ROS	Task 1
 Tele-operating TurtleBot 	Task 2
 Autonomous navigation 	Task 3
 Autonomous control of the mobile platform 	
 Acquiring images and 3D information 	
 Simultaneous mapping and localization (SLAM))
 Path planning, obstacle avoidance, approaching 	g
 Advanced fine manoeuvring and parking 	
 Intelligent navigation and exploration of space 	
 Advanced perception and cognitive capabilitie 	es
 Detection of faces, circles, 3D rings, 3D cylinde 	ers, surface defects
 Recognition of colour, faces 	
 Basic manipuation and visual servoing 	
 Speech synthesis, speech recognition, dialogue 	e processing (reading QR

Belief maintenance, reasoning, planning

codes)

Task 2 goals

- The main goals of the second task and competition are:
 - to improve the navigation
 - to search the space
 - to detect objects in 3D point clouds
 - to robustly detect the rings
 - (to robustly detect the cylinders)
 - to relate 3D point clouds and colour information from RGB images
 - to recognize colours
 - to master fine manoeuvring of the robot

