Izpit iz Osnov matematične analize

- Time limit: **45 minutes**
- All the results should be written on this paper. Additional calculations and arguments have to be included.
- Exam is closed book, mobile phones and other devices are **strictly** prohibited.
- 1. [20 points] Complex numbers
 - (a) Write numbers $z_1 = -1$, $z_2 = -i$ and $z_3 = 1 i$ in polar form and plot them in the complex plane.
 - (b) Describe and plot the set A of complex numbers with the property that their distance from z_1 is at most 2, and the set B of complex numbers equidistant from z_1 and z_2 .

(c) Draw the images of sets A and B with the map $z \mapsto z - 1$.

(d) Draw the images of sets A and B with the map $z \mapsto z(1-i)$.

2. [15 points] Sequences and series

- (a) A sequence (a_n) is increasing if _____
- (b) Find the necessary and sufficient condition for the convergence of an increasing sequence: an increasing sequence (a_n) is convergent if and only if
- (c) For each of the following sequences determine if it is increasing or convergent and find the limit (if it exists):

 $a_n = \frac{n-1}{n+1}$ $b_n = -n^2 + 20n$ $c_n = (1 + \frac{1}{n})^n$

3. [15 points] Functions

- (a) A function f is injective if
- For each of the given functions determine if it is injective. If it is, find its inverse function. If not, give a reason why.

(b)
$$f(x) = \log(x^2 - 1)$$

(c)
$$h(x) = \log(2x - 1)$$

4. [20 points] Derivatives

- (a) What is a gradient of a function of two variables f(x, y)?
- (b) In what direction does the vector $\operatorname{grad} f(x, y)$ point when it is non-zero??
- (c) Write down the gradient of the function $f(x, y) = \sqrt{x^2 + y^2}$.
- (d) Draw the level curve of the function $f(x, y) = \sqrt{x^2 + y^2}$ through the point (1, 1) and find the directional derivative at this point in the direction, tangent to the level line.

- 5. [20 points] Extremes A function f(x) is infinitely differentiable (smooth).
 - (a) What is a stationary point of f(x)?
 - (b) How can we use the first derivative to determine if a stationary point is a local extreme and to determine the type of the extreme?
 - (c) If $f'(x_0) = f''(x_0) = 0$ and $f^{(4)}(x_0) < 0$, what condition on $f'''(x_0)$ ensures us that x_0 is a local extreme? Is it a minimum or a maximum?
 - (d) Does the function $f(x) = \int_0^x t(e^{-t} 1) dt$ have a local extreme at $x_0 = 0$? Why? If yes, is it a minimum or a maximum?

6. [20 points] Integrals

(a) What is the integral sum f(x) on the interval [a, b]?

$$S_n =$$

Write down the definition of the definite integral

$$\int_{a}^{b} f(x) \, dx =$$

The integral $\int_0^2 \sqrt{4-x^2} \, dx$ represents the area of a planar figure. Draw this figure. What is the value of this integral?