ID: \qquad

Second exam for OMA, $\mathbf{0 2 . 0 2 . 2 0 2 0}$

- Time limit: $\mathbf{3 0}$ minutes
- For a passing grade you have to achieve at least 50% of all points. The number in the bracket [.] tells you how many points you get for a correct solution to the question.
- Any attempt of copying the solution of someone else, talking, using electronic equipment is strictly forbidden.

1. [40 points] In this task let S be the fourth nonzero cypher of your student ID (vpisna številka), counted from the left to the right.
(a) Write down an example of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ consisting only of positive terms, such that the series $\sum_{n=1}^{\infty} a_{n}^{S+1}$ diverges, while the alternating series $\sum_{n=1 \infty}(-1)^{n} a_{n}^{S+1}$ converges.
(b) Let $\sum_{n \in \mathbb{N}} a_{n}$ be a series consisting of only positive terms, such that $\lim _{n \rightarrow \infty} a_{n}=1$ holds. Is it possible that with the changes of all terms $a_{2 n}$ (i.e., terms with even indices), the series becomes convergent?
(c) Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers, such that $a_{n} \in[0,1]$ and $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2021}$.
i. Write down or draw an example of a function (not neccessarily continuous) $f:[0, S) \rightarrow \mathbb{R}$ such that $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=S$ and $\lim _{x \uparrow S} f(x)=\infty$.
ii. Does there exist a continuous function $f:[0,1] \rightarrow \mathbb{R}$ satisfying $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\infty$?
2. [30 points] In this task let T be the third nonzero cypher of your student ID (vpisna številka), counted from the right to the left.
(a) Write down an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of two variables, which grows the most rapidly along the direction $(2,1)$ in the point $(1, T)$.
(b) Write down an example of a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of two variables, which has a local minimum in the point $(1, T)$.

Hint: The Taylor polynomial of degree 2 of a function g in the point $\left(x_{0}, y_{0}\right)$ could be helpful:

$$
\begin{aligned}
T_{2}(x, y) & =g\left(x_{0}, y_{0}\right)+g_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& +\frac{1}{2} g_{x x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)^{2}+g_{x y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right)+\frac{1}{2} g_{y y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)^{2}
\end{aligned}
$$

(c) Let \mathcal{C} be the curve, determined by the equation $h(x, y)=0$. Assume that the point $(1, T)$ is an extremum of your function f from (2a) over the curve \mathcal{C}. Determine the direction of the tangent to the curve \mathcal{C} in the point $(1, T)$.

For each of the following statements exactly one of the images above is appropriate (for each statement another image). Choose the appropriate image and justify your choice by finding the property of the image, which holds only for this image.
(a) On the image there are graphs of two indefinite integrals of some function $f:[-2,2] \rightarrow \mathbb{R}$.
(b) On the image there are graphs of the function $f:[-2,2] \rightarrow \mathbb{R}$ and its definite integral $F(x)=$ $\int_{-2}^{x} f(t) d t$
(c) On the image the blue graph represent the function $f:[-2,2] \rightarrow \mathbb{R}$, while the orange one its derivative.

