## Second exam for OMA, 02.02.2020

- Time limit: **30 minutes**
- For a passing grade you have to achieve at least 50% of all points. The number in the bracket  $[\cdot]$  tells you how many points you get for a correct solution to the question.
- Any attempt of copying the solution of someone else, talking, using electronic equipment is **strictly** forbidden.
- 1. [40 points] In this task let S be the fourth nonzero cypher of your student ID (vpisna številka), counted from the left to the right.
- (a) Write down an example of the sequence  $(a_n)_{n \in \mathbb{N}}$  consisting only of positive terms, such that the series  $\sum_{n=1}^{\infty} a_n^{S+1}$  diverges, while the alternating series  $\sum_{n=1^{\infty}} (-1)^n a_n^{S+1}$  converges.
- (b) Let  $\sum_{n \in \mathbb{N}} a_n$  be a series consisting of only positive terms, such that  $\lim_{n \to \infty} a_n = 1$  holds. Is it possible that with the changes of all terms  $a_{2n}$  (i.e., terms with even indices), the series becomes convergent?
- (c) Let  $(a_n)_n$  be a sequence of real numbers, such that  $a_n \in [0,1]$  and  $\lim_{n \to \infty} a_n = \frac{1}{2021}$ .
- i. Write down or draw an example of a function (not neccessarily continuous)  $f : [0, S) \to \mathbb{R}$  such that  $\lim_{n \to \infty} f(a_n) = S$  and  $\lim_{x \uparrow S} f(x) = \infty$ .
- ii. Does there exist a continuous function  $f: [0,1] \to \mathbb{R}$  satisfying  $\lim_{n \to \infty} f(a_n) = \infty$ ?
- 2. [30 points] In this task let T be the third nonzero cypher of your student ID (vpisna številka), counted from the right to the left.
- (a) Write down an example of a function  $f : \mathbb{R}^2 \to \mathbb{R}$  of two variables, which grows the most rapidly along the direction (2, 1) in the point (1, T).
- (b) Write down an example of a function  $g : \mathbb{R}^2 \to \mathbb{R}$  of two variables, which has a local minimum in the point (1, T).

**Hint:** The Taylor polynomial of degree 2 of a function g in the point  $(x_0, y_0)$  could be helpful:

$$T_2(x,y) = g(x_0,y_0) + g_x(x_0,y_0)(x-x_0) + g_y(x_0,y_0)(y-y_0) + \frac{1}{2}g_{xx}(x_0,y_0)(x-x_0)^2 + g_{xy}(x_0,y_0)(x-x_0)(y-y_0) + \frac{1}{2}g_{yy}(x_0,y_0)(y-y_0)^2.$$

(c) Let C be the curve, determined by the equation h(x, y) = 0. Assume that the point (1, T) is an extremum of your function f from (2a) over the curve C. Determine the direction of the tangent to the curve C in the point (1, T).



For each of the following statements exactly one of the images above is appropriate (for each statement another image). Choose the appropriate image and **justify** your choice by finding the property of the image, which holds only for this image.

- (a) On the image there are graphs of two indefinite integrals of some function  $f: [-2, 2] \to \mathbb{R}$ .
- (b) On the image there are graphs of the function  $f: [-2, 2] \to \mathbb{R}$  and its definite integral  $F(x) = \int_{-2}^{x} f(t) dt$ .
- (c) On the image the **blue** graph represent the function  $f : [-2, 2] \to \mathbb{R}$ , while the orange one its derivative.