Name and surname: \qquad ID: \qquad

Exam for OMA, 02.07.2020

- Time limit: $\mathbf{4 5}$ minutes
- For a passing grade you have to achieve at least 50% of all points. The number in the bracket [•] tells you how many points you get for a correct solution to the question.
- Any attempt of copying the solution of someone else, talking, using electronic equipment is strictly forbidden.

1. [30 points] There are the first 30 terms of three sequences plotted on the following image:

The sequences follow the same shape also in the continuation, i.e., the sequence a_{n} is above b_{n}, which is above c_{n}, all are decreasing and nonnegative.
(a) Let us assume that $\lim _{n \rightarrow \infty} a_{n}=0$. What is the value of $\lim _{n \rightarrow \infty} b_{n}$? Is the sequence $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ convergent?
(b) Let us assume that $\sum_{n=1}^{\infty} b_{n}$ is divergent. What can you infer about the convergence/divergence of $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} c_{n}$?
(c) Let us assume that $\sum_{n=1}^{\infty} a_{n}$ divergent, while $\sum_{n=1}^{\infty} b_{n}$ is convergent. We build a new sequence d_{n}, which consists of 30 terms of the sequence c_{n}, then 30 terms of the sequence b_{n}, and then the rest are terms of the sequence a_{n}. What can you infer about the convergence/divergence of $\sum_{n=1}^{\infty} d_{n}$?
2. [30 points] Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be twice differentiable function of two variables. We have a table of function values and its partial derivatives:

(x, y)	$g(x, y)$	$g_{x}(x, y)$	$g_{y}(x, y)$	$g_{x x}(x, y)$	$g_{x y}(x, y)$	$g_{y y}(x, y)$
$(-2,0)$	3	0	1	2	1	1
$(-1,0)$	1	-1	0	-1	2	-1
$\left(\frac{2}{3}, 0\right)$	4	0	0	2	1	1
$(3,0)$	5	1	0	2	1	1
$(-2,1)$	2	0	0	-3	0	1
$(-1,1)$	-7	2	0	2	1	1
$\left(\frac{2}{3}, 1\right)$	-1	0	0	-1	1	-2
$(3,1)$	3	0	1	-1	-2	1

(a) Which points in the table are stationary points of g ?
(b) Among points in the table above find local extrema of g and classify them.
(c) On the following image there is a graph of a function $f:[-2.5,3.5] \rightarrow \mathbb{R}$.

Determine the constrained extrema of g on the strip $[-2.5,3.5] \times \mathbb{R}$ at the constraint $h(x, y)=0$, where $h(x, y)=(f(x))^{2}+(y-1)^{2}$.

Hint: Determine which points satisfy $h(x, y)=0$.
3. [40 points]

Image 1

Image 2

Image 3

Image 4

On the images above there are graphs of some functions. For each of the following statements determine all images, which satisfy the statement and justify your decision.
(a) Definite integral $\int_{0}^{0.1} f(x) d x$ of the function with a graph on the image exists.
(b) Second derivative of the function with a graph on the image has at least one zero on the interval $(0,0.1)$.
(c) First derivative of the function with a graph on the image does not exist on the whole interval $(0,0.1)$.
(d) First derivative of the function with a graph on the image is never positive on the interval $(0,0.1)$.

