2. popravni kolokvij iz Osnov matematične analize (Ljubljana, 14. februar 2017)

Time limit: 90 minutes. Every exercise is worth the same amount of points. Read the instructions carefully. You may use two A_{4} sheets with formulas. The results will be published on ucilnica.fri.uni-lj.si.

Justify all your answers!

1. An integer sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is defined with initial terms $a_{0}=0, a_{1}=2$ and a recurrence formula

$$
a_{n}=4 a_{n-1}-3 a_{n-2},
$$

which applies for $n \geq 2$. Show, using mathematical induction, that for every $n \in \mathbb{N}$ we have

$$
a_{n}=3^{n}-1 .
$$

2. Calculate the following limits, if they exist:
(a) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$,
(b) $\lim _{x \rightarrow \infty} \frac{e^{x}+x^{2}}{e^{x}+4 x}$,
(c) $\lim _{x \searrow 2} \frac{x^{2}+4 x-12}{|x-2|}$ in $\lim _{x \nearrow 2} \frac{x^{2}+4 x-12}{|x-2|}$.
3. (a) Find all points in the plane, such that $y=\frac{1}{x}$ and the function

$$
f(x, y)=-\frac{1}{x}+\frac{1}{2} \ln y
$$

has an extreme.
(b) For each of these points find the directional derivative in the direction of the gradient.
4. Given the function $f(x)=\left(x^{2}-1\right) e^{x}$
(a) plot its graph,
(b) calculate the indefinite integral

$$
\int\left(x^{2}-1\right) e^{x} d x
$$

and
(c) determine the area, delimited by the graph and the x-axis.

