3. popravni kolokvij iz Osnov matematične analize (Ljubljana, 1. september 2017)

Time limit: 90 minutes. Every exercise is worth the same amount of points. Read the instructions carefully. You may use two A_{4} sheets with formulas. The results will be published on ucilnica.fri. uni-lj.si.

Justify all your answers!

1. (a) Using the polar coordinates and De Moivre's formula calculate $(-\sqrt{3}+3 i)^{7}$.
(b) Find a complex number z which is a solution of the equation $|z|+z=2+i$.
2. A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is given by the initial term $a_{0}=0$ and the recursive formula

$$
a_{n+1}=\frac{3 a_{n}+2}{5} .
$$

(a) Find a_{1} and a_{2}.
(b) Find all candidates for the limit of the sequence a_{n}.
(c) Use mathematical induction to first show that the sequence a_{n} is bounded from above by 1 , and then to show that the sequence is increasing. What is $\lim _{n \rightarrow \infty} a_{n}$?
3. Given the points $A(1,-2)$ and $B(3,3)$, find the point C on the parabola $y=x^{2}$, such that the sum of the squares of the distances to the points A and B is minimal.
4. Let

$$
f(x)=(x+1)(x-2)
$$

and

$$
g(x)=(x+1)(x-2)(x+3)^{2} .
$$

(a) Find all intersections of the graphs of functions f and g.
(b) Sketch the graphs of the functions f and g.
(c) The graphs of f and g determine three bounded sections in the plane. Determine the combined area of the three sections.

