
Nature
inspired
computing

Prof Dr Marko Robnik Šikonja
Intelligent Systems
Edition 2024

University of Ljubljana, Faculty of Computer and Information Science

Contents

 Introduction to evolutionary computation

 Genetic algorithms

 Genetic algorithms and automatic code
generation

Evolutionary and natural computation

 Many engineering and computational ideas from nature work
fantastically!

 Evolution as an algorithm

 Abstraction of the idea:

 progress, adaptation - learning, optimization

 Survival of the fittest - competition of agents, programs, solutions

 Populations – parallelization

 (Over)specialization – local extremes

 Neuro-evolution, evolution of robots, evolution of novelty

 revival of interest

Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants

A result of successful evolutionary
program

Main approaches

 Genetic algorithms

 Genetic programming

 Swarm methods (particles, ants, bees, …)

 Self-organized fields

 Differential evolution

 etc.

Genetic Algorithms - History

 Pioneered by John Holland in the 1970’s

 Got popular in the late 1980’s

 Based on ideas from Darwinian evolution

 Can be used to solve a variety of problems that
are not easy to solve using other techniques

Chromosome, Genes and
Genomes

Gene representation

 Bit vector

 Numeric vectors

 Strings

 Permutations

 Trees: functions, expressions, programs

 ...

Crossover

 Single point/multipoint

 Shall preserve individual objects

Crossover: bit representation

Parents: 1101011100 0111000101

Children: 1101010101 0111001100

Crossover: vector representation

Simplest form

Parents: (6.13, 4.89, 17.6, 8.2) (5.3, 22.9, 28.0, 3.9)

Children: (6.13 , 22.9, 28.0, 3.9) (5.3, 4.89, 17.6, 8.2)

In reality: linear combination of parents

Linear crossover

 The linear crossover simply takes a linear
combination of the two individuals.

 Let x = (x1,…xN) and y = (y1,…yN)

 Select α in (0, 1)

 The results of the crossover is α x + (1- α)y .

 Possible variation: choose a different α for each
position.

Linear crossover example

 Let α = 0.75 and we have this two individuals:

A = (5, 1, 2, 10) and B = (2, 8, 4, 5)

 then the result of the crossover is:

(3.75 + 0.5, 0.75 + 2, 1.5 + 1, 7.5 + 1.25) = (4.25, 2.75,2.5, 8.75)

 If we use the variation and we have α = (0.5, 0.25, 0.75,
0.5), the result is:

(2.5 + 1, 0.25 + 6, 1.5 + 1, 5 + 2.5) = (3.5, 6.25, 2.5, 7.5)

Crossover: trees

Permutations: travelling salesman
problem

 9 cities: 1,2 ..9

 bit representation using 4 bits?

 0001 0010 0011 0100 0101 0110 0111 1000 1001

 crossover would give invalid genes

 permutation and ordered crossover

 keep (part of) sequences

 use the sequence from second cut, keep already existing

1 9 2 | 4 6 5 7 | 8 3 → x x x | 4 6 5 7 | x x 2 3 9 | 4 6 5 7 | 1 8

4 5 9 | 1 8 7 6 | 2 3 → x x x | 1 8 7 6 | x x 3 9 2 | 1 8 7 6 | 4 5

A demo: Eaters
 Plant eaters are simple organisms, moving around in a

simulated world and eating plants

 Fitness function: number of plants eaten

 An eater sees one square in front of its pointed end; it sees 4
possible things: another eater, plant, empty square or the wall

 Actions: move forward, move backward, turn left, turn right

 It is not allowed to move into the wall or another eater

 Internal state: number between 0 and 15

 The behavior is determined by the 64 rules encoded in its
chromosome; one rule for each of 16 states x 4 observations;
one rule is a pair (action, next state)

 The chromosome therefore consists of length 64 x (4+2) bits =
384 bits

 Crossover and mutation

https://math.hws.edu/eck/js/genetic-algorithm/GA.html

Gray coding of binary numbers

 Keeping similarity

Adaptive crossover

 Different evolution phases

 Crossover templates

 0 – first parent, 1 second parent

 Possibly different dynamics of template
crossover

Mutation

 Adding new information

 Binary representation:
0111001100 --> 0011001100

 Single point/multipoint

 Random search?

 Lamarckian (searching for locally best mutation)

Lamarckianism
Lamarckism is the hypothesis that an organism can
pass on characteristics that it has acquired through
use or disuse during its lifetime to its offspring.

Gaussian mutation

 When mutating one gene, selecting the new
value by choosing uniformly among all the
possible values is not the best choice
(empirically).

 The mutation selects a position in the vector of
floats and mutates it by adding a Gaussian error:
a value extracted according to a normal
distribution with the mean 0 and certain variance
depending on the problem.

Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants

Evolutional model - who will reproduce

 Keeping the good

 Prevent premature convergence

 Assure heterogeneity of population

Selection

 Proportional

 Rank proportional

 Tournament

 Single tournament

 Stochastic
universal sampling

Tournament selection

1. set t=size of the tournament,
p=probability of a choice

2. randomly sample t agents from population
forming a tournament

3. select the best with probability p

4. select second best with probability p(1-p)

5. select third best with probability p(1-p)2

6. ...

Replacement

 All

 According to the fitness (roulette, rang,
tournament, randomly)

 Elitism (keep a portion of the best)

 Local elitism (children replace parents if they are
better)

Single tournament selection

1. randomly split the population into small groups

2. apply crossover to two best agents from each
group; their offspring replace two worst agents
from the group

 advantage: in groups of size g the best g-2 progress
to next generation (we do not use good agents,
maximal quality does not decrease)

 no matter the quality even the best agents have no
more than two offspring (we do not loose
population diversity)

 computational load?

Population size

 small, large?

Niche specialization

 evolutionary niches are generally undesired

 punish too similar agents

f’i = fi /q(i)

q(i) = { 1 ; sim(i) <=4,
sim(i)/4 ; otherwise },

where sim(i) is the number of very similar agents
to agent i

Stopping criteria

 number of generations, track progress,
availability of computational resources,
leaderboard mutability heuristics, etc.

Checkboard example

 We are given an n by n checkboard in which every field
can have a different colour from a set of four colors.

 Goal is to achieve a checkboard in a way that there are
no neighbours with the same color (not diagonal)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Checkboard example Cont’d

 Chromosomes represent the way the checkboard is colored.

 Chromosomes are not represented by bitstrings but by
bitmatrices

 The bits in the bitmatrix can have one of the four values 0, 1, 2 or
3, depending on the color.

 Crossover involves matrix manipulation instead of point wise
operating.

 Crossover can combine the parential matrices in a horizontal,
vertical, triangular or square way.

 Mutation remains bitwise - changing bits

 Fitness function: check 2n(n-1) violations

Checkboard example Cont’d

• Fitness curves for different cross-over rules:

0 100 200 300 400 500
130

140

150

160

170

180

F
it
n
e
s
s

Lower-Triangular Crossing Over

0 200 400 600 800
130

140

150

160

170

180
Square Crossing Over

0 200 400 600 800
130

140

150

160

170

180

Generations

F
it
n
e
s
s

Horizontal Cutting Crossing Over

0 500 1000 1500
130

140

150

160

170

180

Generations

Verical Cutting Crossing Over

Why genetic algorithms work?

 building blocks hypothesis

 ... is controversial (mutations)

 sampling based hypothesis

Parameters of GA

 Encoding (into fixed length strings)

 Length of the strings;

 Size of the population;

 Selection method;

 Probability of performing crossover (pc);

 Probability of performing mutation (pm);

 Termination criteria (e.g., a number of generations, a
leaderboard mutability, a target fitness).

Usual settings of GA parameters

 Population size: from 20–50 to a few thousands
individuals;

 Crossover probability: high (around 0.9);

 Mutation probability: low (below 0.1).

Demo: find genome of
a biomorph

 A biomorph is a graphic configuration generated from nine genes.

 The first eight genes each encode a length and a direction.

 The ninth gene encodes the depth of branching.

 Each gene is encoded with five bits.

 The four first bits represent the value, the fifth its sign.

 Each gene can get a value from -15 to +15.

 value of gen nine is limited to 2-9.

 There are : 8 (number of possible depths) x 240 (the 8 * 5 =40 bits encoding basic genes) =
8.8 x1012 possible biomorphs. If we were able to test 1000 genomes every second, we would
need about 280 years to complete the whole search.

 At the beginning, the drawing algorithm being known, we get the image of a biomorph.
The only informations directly measurable are the positions of branching points and their
number. The basic algorithm simulates the collecting of these informations.

 Fitness function: the distance of the generated biomorph from the target one.

http://www.rennard.org/alife/english/gavgb.html

Applications

 optimization

 scheduling

 bioinformatics,

 machine learning

 planning

 multicriteria optimization

Where to use evolutionary algorithms?

 Many local extremes

 Just fitness, without derivations

 No specialized methods

 Multiobjective optimization

 Robustness

 Combined approaches

Multiobjective optimization

 Fitness function with several objectives

 Cost, energy, environmental impact, social
acceptability, human friendliness

 min F(x)=min (f1(x), f2(x), ..., fn(x))

 Pareto optimal solution: we cannot improve one
criteria without getting worse on others

 GA: in reproduction, use all criteria

An example:
smart buildings

 simple scenario: heater, accumulator, solar
panels, electricity from grid

 criteria: price, comfort of users (as the difference
in temperature to the desired one)

 chromosome: shall encode schedule of charging
and discharging the battery, heating on/off

 operational time is discretized to 15min intervals

Control problem for smart buildings

Parameters:
• the price of energy from the grid varies during the

day
• the prediction of solar activity
• schedule of heater and battey
• usual activities of a user

Smart building: structure of the
chromosome

 temperature: for each interval we set the desired
temperature between Tmin and Tmax interval

 battery+: if photovoltaic panels produce enough
energy we set: 1 charging, 0 no charging

 battery-: if photovoltaic panels do not produce
enough energy, we set: 1 battery shall discharge,
0 battery is not used

 appliances: each has its schedule when it is used
(1) and when it is off (0)

Example of schedule

Example of solutions and optimal front

Toolboxes and libraries

 CIlib – computational intelligence library

 EO (C++) - evolutionary computation library

 ECF- Evolutionary Computation Framework
(C++)

 ECJ, EvA2, JAGA (Java)

 R: Rfreak, ppso, numDeriv, etc

 Matlab

Strengths and weaknesses

 robust, adaptable, general
 requires only weak knowledge of the problem (fitness

function and representation of genes)
 several alternative solutions
 hybridization and parallelization
 faster and less memory than (exhaustive, random)

search
 little effort to try

 suboptimal solutions
 possibly many parameters
 may be computationally expensive

 no-free-lunch theorem

Neuroevolution: evolving neural
networks

• Evolving neurons and/or topologies

Neuroevolution

 Evolving neurons: not really necessary but
attempted

 Evolving weights instead of backpropagation and
gradient descent

 Evolving the architecture of neural network

 For small nets, one uses a simple matrix representing which
neuron connects which.

 This matrix is, in turn, converted into the necessary 'genes',
and various combinations of these are evolved.

