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Evolutionary and natural computation

 Many engineering and computational ideas from nature work 
fantastically!

 Evolution as an algorithm

 Abstraction of the idea:

 progress, adaptation - learning, optimization

 Survival of the fittest - competition of agents, programs, solutions

 Populations – parallelization

 (Over)specialization – local extremes

 Neuro-evolution, evolution of robots, evolution of novelty

 revival of interest



Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants



A result of successful evolutionary 
program



Main approaches

 Genetic algorithms

 Genetic programming

 Swarm methods (particles, ants, bees, …)

 Self-organized fields

 Differential evolution

 etc.



Genetic Algorithms - History

 Pioneered by John Holland in the 1970’s

 Got popular in the late 1980’s

 Based on ideas from Darwinian evolution

 Can be used to solve a variety of problems that 
are not easy to solve using other techniques



Chromosome, Genes and
Genomes



Gene representation

 Bit vector

 Numeric vectors

 Strings

 Permutations

 Trees: functions, expressions, programs

 ...



Crossover

 Single point/multipoint

 Shall preserve individual objects



Crossover: bit representation

Parents:     1101011100 0111000101

Children:   1101010101    0111001100



Crossover: vector representation

Simplest form

Parents:   (6.13, 4.89, 17.6, 8.2) (5.3, 22.9, 28.0, 3.9)

Children: (6.13 , 22.9, 28.0, 3.9)  (5.3, 4.89, 17.6, 8.2)

In reality: linear combination of parents



Linear crossover

 The linear crossover simply takes a linear 
combination of the two individuals.

 Let x = (x1,…xN) and y = (y1,…yN)

 Select α  in (0, 1)

 The results of the crossover is α x + (1- α)y .

 Possible variation: choose a different α for each 
position.



Linear crossover example

 Let α = 0.75 and we have this two individuals:

A = (5, 1, 2, 10) and B = (2, 8, 4, 5)

 then the result of the crossover is:

(3.75 + 0.5, 0.75 + 2, 1.5 + 1, 7.5 + 1.25) = (4.25, 2.75,2.5, 8.75)

 If we use the variation and we have α = (0.5, 0.25, 0.75,
0.5), the result is:

(2.5 + 1, 0.25 + 6, 1.5 + 1, 5 + 2.5) = (3.5, 6.25, 2.5, 7.5)



Crossover: trees



Permutations: travelling salesman 
problem

 9 cities: 1,2 ..9

 bit representation using 4 bits?

 0001 0010 0011 0100 0101 0110 0111 1000 1001

 crossover would give invalid genes

 permutation and ordered crossover

 keep (part of) sequences

 use the sequence from second cut, keep already existing

1 9 2 | 4 6 5 7 | 8 3    → x x x | 4 6 5 7 | x x   2 3 9 | 4 6 5 7 | 1 8

4 5 9 | 1 8 7 6  | 2 3   → x x x | 1 8 7 6  | x x   3 9 2 | 1 8 7 6 | 4 5



A demo: Eaters
 Plant eaters are simple organisms, moving around in a 

simulated world and eating plants

 Fitness function: number of plants eaten

 An eater sees one square in front of its pointed end; it sees 4 
possible things: another eater, plant, empty square or the wall

 Actions: move forward, move backward, turn left, turn right

 It is not allowed to move into the wall or another eater

 Internal state: number between 0 and 15

 The behavior is determined by the 64 rules encoded in its 
chromosome; one rule for each of 16 states x 4 observations; 
one rule is a pair (action, next state)

 The chromosome therefore consists of length 64 x (4+2) bits = 
384 bits

 Crossover and mutation

https://math.hws.edu/eck/js/genetic-algorithm/GA.html


Gray coding of binary numbers

 Keeping similarity



Adaptive crossover

 Different evolution phases

 Crossover templates

 0 – first parent, 1 second parent

 Possibly different dynamics of template 
crossover



Mutation

 Adding new information

 Binary representation:
0111001100 --> 0011001100

 Single point/multipoint

 Random search?

 Lamarckian (searching for locally best mutation)



Lamarckianism
Lamarckism is the hypothesis that an organism can 
pass on characteristics that it has acquired through 
use or disuse during its lifetime to its offspring. 



Gaussian mutation

 When mutating one gene, selecting the new 
value by choosing uniformly among all the 
possible values is not the best choice
(empirically).

 The mutation selects a position in the vector of 
floats and mutates it by adding a Gaussian error: 
a value extracted according to a normal 
distribution with the mean 0 and certain variance 
depending on the problem.



Template of evolutionary program

generate a population of agents (objects, data structures)

do {

compute fitness (quality) of the agents
select candidates for the reproduction using fitness
create new agents by combining the candidates
replace old agents with new ones

} while (not satisfied)

 immensely general -> many variants



Evolutional model - who will reproduce

 Keeping the good

 Prevent premature convergence

 Assure heterogeneity of population



Selection

 Proportional

 Rank proportional

 Tournament

 Single tournament

 Stochastic
universal sampling



Tournament selection

1. set t=size of the tournament,
p=probability of a choice

2. randomly sample t agents from population 
forming a tournament

3. select the best with probability p 

4. select second best with probability p(1-p)

5. select third best with probability p(1-p)2

6. ...



Replacement

 All 

 According to the fitness (roulette, rang, 
tournament, randomly)

 Elitism (keep a portion of the best)

 Local elitism (children replace parents if they are 
better)



Single tournament selection

1. randomly split the population into small groups

2. apply crossover to two best agents from each 
group; their offspring replace two worst agents 
from the group

 advantage: in groups of size g the best g-2 progress 
to next generation (we do not use good agents, 
maximal quality does not decrease)

 no matter the quality even the best agents have no 
more than two offspring (we do not loose 
population diversity)

 computational load?



Population size

 small, large?



Niche specialization

 evolutionary niches are generally undesired

 punish too similar agents

f’i = fi /q(i)  

q(i) = { 1                ; sim(i) <=4, 
sim(i)/4    ; otherwise },

where sim(i) is the number of very similar agents 
to agent i



Stopping criteria

 number of generations, track progress, 
availability of computational resources,
leaderboard mutability heuristics, etc.



Checkboard example

 We are given an n by n checkboard in which every field 
can have a different colour from a set of four colors.

 Goal is to achieve a checkboard in a way that there are 
no neighbours with the same color (not diagonal)
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Checkboard example Cont’d

 Chromosomes represent the way the checkboard is colored.

 Chromosomes are not represented by bitstrings but by 
bitmatrices

 The bits in the bitmatrix can have one of the four values 0, 1, 2 or 
3, depending on the color.

 Crossover involves matrix manipulation instead of point wise 
operating. 

 Crossover can combine the parential matrices in a horizontal, 
vertical, triangular or square way.

 Mutation remains bitwise  - changing bits

 Fitness function: check 2n(n-1) violations



Checkboard example Cont’d

• Fitness curves for different cross-over rules:
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Why genetic algorithms work?

 building blocks hypothesis

 ... is controversial (mutations)

 sampling based hypothesis



Parameters of GA

 Encoding (into fixed length strings)

 Length of the strings;

 Size of the population;

 Selection method;

 Probability of performing crossover (pc );

 Probability of performing mutation (pm);

 Termination criteria (e.g., a number of generations, a 
leaderboard mutability, a target fitness).



Usual settings of GA parameters

 Population size: from 20–50 to a few thousands 
individuals;

 Crossover probability: high (around 0.9);

 Mutation probability: low (below 0.1).



Demo: find genome of 
a biomorph

 A biomorph is a graphic configuration generated from nine genes. 

 The first eight genes each encode a length and a direction. 

 The ninth gene encodes the depth of branching. 

 Each gene is encoded with five bits. 

 The four first bits represent the value, the fifth its sign. 

 Each gene can get a value from -15 to +15. 

 value of gen nine is limited to 2-9.

 There are : 8 (number of possible depths) x 240 (the 8 * 5 =40 bits encoding basic genes) = 
8.8 x1012 possible biomorphs. If we were able to test 1000 genomes every second, we would 
need about 280 years to complete the whole search.

 At the beginning, the drawing algorithm being known, we get the image of a biomorph. 
The only informations directly measurable are the positions of branching points and their 
number. The basic algorithm simulates the collecting of these informations.

 Fitness function: the distance of the generated biomorph from the target one. 

http://www.rennard.org/alife/english/gavgb.html


Applications

 optimization

 scheduling

 bioinformatics, 

 machine learning

 planning

 multicriteria optimization



Where to use evolutionary algorithms?

 Many local extremes

 Just fitness, without derivations

 No specialized methods

 Multiobjective optimization

 Robustness

 Combined approaches



Multiobjective optimization

 Fitness function with several objectives

 Cost, energy, environmental impact, social 
acceptability, human friendliness

 min F(x)=min (f1(x), f2(x), ..., fn(x))

 Pareto optimal solution: we cannot improve one 
criteria without getting worse on others

 GA: in reproduction, use all criteria



An example: 
smart buildings

 simple scenario: heater, accumulator, solar 
panels, electricity from grid

 criteria: price, comfort of users (as the difference 
in temperature to the desired one)

 chromosome: shall encode schedule of charging 
and discharging the battery, heating on/off

 operational time is discretized to 15min intervals



Control problem for smart buildings

Parameters:
• the price of energy from the grid varies during the 

day
• the prediction of solar activity
• schedule of heater and battey
• usual activities of a user



Smart building: structure of the 
chromosome

 temperature: for each interval we set the desired 
temperature between Tmin and Tmax interval

 battery+: if photovoltaic panels produce enough 
energy we set: 1 charging, 0 no charging

 battery-: if photovoltaic panels do not produce 
enough energy, we set: 1 battery shall discharge, 
0 battery is not used

 appliances: each has its schedule when it is used 
(1) and when it is off (0)



Example of schedule



Example of solutions and optimal front



Toolboxes and libraries

 CIlib – computational intelligence library

 EO (C++) - evolutionary computation library

 ECF- Evolutionary Computation Framework 
(C++)

 ECJ, EvA2, JAGA (Java)

 R: Rfreak, ppso, numDeriv, etc

 Matlab



Strengths and weaknesses

 robust, adaptable, general
 requires only weak knowledge of the problem (fitness 

function and representation of genes)
 several alternative solutions
 hybridization and parallelization
 faster and less memory than (exhaustive, random) 

search
 little effort to try

 suboptimal solutions
 possibly many parameters
 may be computationally expensive

 no-free-lunch theorem



Neuroevolution: evolving neural 
networks

• Evolving neurons and/or topologies



Neuroevolution

 Evolving neurons: not really necessary but 
attempted

 Evolving weights instead of backpropagation and 
gradient descent

 Evolving the architecture of neural network 

 For small nets, one uses a simple matrix representing which 
neuron connects which.

 This matrix is, in turn, converted into the necessary 'genes', 
and various combinations of these are evolved.


