
Data preprocessing: feature engineering

Intelligent Systems, Edition 2024

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja



Contents

• Data preprocessing

• Feature subset selection: filter, wrapper and embedded methods

• Model evaluation

• Dimensionality reduction

• Feature selection extensions: unsupervised and semi-supervised learning, multi-
task, multi-view, multi-label learning

2



First steps in ML

• Ther data preparation step is seriously underestimated 

3



Data preprocessing
• Data cleansing: removing or correcting records that have corrupted or invalid values from raw data, and removing records 

that are missing a large number of columns.

• Instances selection and partitioning: selecting data points from the input dataset to create training, evaluation 
(validation), and test sets. This process includes techniques for repeatable random sampling, minority classes 
oversampling, and stratified partitioning.

• Feature tuning: improving the quality of a feature for ML, which includes scaling and normalizing numeric values, 
imputing missing values, clipping outliers, and adjusting values that have skewed distributions.

• Feature transformation: converting a numeric feature to a categorical feature (through discretization), and converting 
categorical features to a numeric representation (through one-hot encoding, sparse and dense feature embeddings). 
Some models work only with numeric or categorical features, while others can handle mixed type features. Even when 
models handle both types, they can benefit from different representations (numeric and categorical) of the same feature.

• Feature extraction: reducing the number of features by creating lower-dimension, more powerful data representations 
using techniques such as PCA, embedding extraction, and hashing.

• Feature selection: selecting a subset of the input features for training the model, and ignoring the irrelevant or redundant 
ones, using filter or wrapper methods. Feature selection can also involve simply dropping features if the features are 
missing a large number of values.

• Feature construction: creating new features by using different ooperators, such as logicač, arithmetical, trigonometrical, 
etc. Features can also be constructed by using domain knowledge, e.g., business logic from the domain of the ML use 
case.

• For unstructured data: often only modest preprocessing is needed for neural networks

• text: casing, tokenization, embedding lookup/calculation

• images: resizing, cropping, filters.
4



Why Reduce Dimensionality?

• Reduces time complexity: Less computation

• Reduces space complexity: Less parameters

• Saves the cost of observing the feature

• Simpler models are more robust on small datasets

• More interpretable; simpler explanation

• Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 
dimensions

5



Feature subset selection

• Choose a small subset of the relevant features from the original 
features by removing irrelevant, redundant and/or noisy features

• The aim: better learning performance, i.e. higher learning accuracy, 
lower computational cost, or better model interpretability

6



Huge number of features

• Text classification, ≈ 50,000 words in a dictionary

• Bioinformatics, ≈ 10,000 measurements of gene expression levels

• Computer vision, ≈ 1,000,000 pixels

7



Evaluation of attributes

• Numerical evaluation and ranking of the attributes

• The success of the evaluation procedure depends on the role it plays in learning:
• feature subset selection

• building of the tree-based models

• constructive induction

• discretization

• attribute weighting

• comprehension

• prediction

• etc.

 

attribute 

evaluation 
attr. description   

of the problem 

quality 

evaluation 



Attribute description

color weight shape size sort

red 12 round middle apple

yellow 20 conic large pear

red 15 round tiny apple

green 8 round small pear

yellow 22 conic large apple

mixed 12 conic small apple

green 15 round middle apple

mixed 8 round tiny apple

yellow 6 round small pear

9

▪ nominal attributes: ordered and unordered

▪ numeric attributes



Feature evaluation

• in order to select attributes, we have to evaluate (rank) them

• the success of feature evaluation is measured through the success of 
learning 

• an example: feature evaluation in decision tree building

• in each interior node of the tree an attribute is selected which 
determines split of the instances

• the attributes are evaluated to ensure useful split

10



Three types of feature selection methods

• Filter methods: independent on learning algorithm, select the most 
discriminative features through a criterion based on the character of 
data, e.g. information gain and ReliefF

• Wrapper methods: use the intended learning algorithm to evaluate 
the features, e.g., progressively add features to SVM while 
performance increases

• Embedded method select features in the process of learning

11



Feature selection: Filter methods

12



Heuristic measures for attribute evaluation

• Impurity based
• information theory based (information gain, gain ratio, distance measure, J-measure)

• probability based: Gini index, DKM, classification error on the training set

• MDL

• statistics G, 2

• mean squared and mean absolute error (MSE, MAE)

• assume conditional independence (upon label) between the attributes

• Context sensitive measures: 
• Relief, Contextual Merit, 

• random forests or boosting based attribute evaluation, 

• affinity graph based 

13



Information gain

• measure purity of labels before and after the split  

• impurity = entropy

• each attribute is evaluated independently from others


=

−=
c

i

ii ppI
1

2 )(log)()( 


==

−=
c

i

jiji

v

j

j vpvpvpAI
A

1

2

1

)|(log)|()()|( 

)|()()( AIIAIG  −=

14



Multivalued and numeric attributes 

15

• multivalued: 
insufficient 
statistical support 
in certain splits

• numeric: 
sometimes 
requires prior 
discretization



Attribute interactions

16

large

small

Size

greenredColor



• criterion: evaluate attribute according to its power of separation 
between near instances 

• values of good attribute should distinguish between near 
instances from different class and have similar values for near 
instances from the same class

Relief algorithms

17



Relief algorithms

• no assumption of conditional independence

• context sensitive

• reliable also in problems with strong conditional dependencies

• included in several machine learning systems (e.g., Weka, Orange, scikit-
learn, R)

• Relief (Kira in Rendell, 1992): two class classification
• ReliefF (Kononenko, 1994): multi-class classification
• RReliefF (Robnik Šikonja in Kononenko, 1997): regression

Marko Robnik-Šikonja, Igor Kononenko: Theoretical and Empirical Analysis of ReliefF and RReliefF. 
Machine Learning Journal, 53:23-69, 2003 

18



Algorithm Relief

Input:  set of instances <xi, i>   

Output: the vector W of  attributes’ evaluations  
 

set all weights W[A] := 0.0; 

for i := 1 to m do begin 

randomly select an instance R; 

find nearest hit H and nearest miss M;  

for A := 1 to #all_attributes do 

W[A] := W[A] - diff(A,R,H)/m + diff(A,R,M)/m;  

end; 



for nominal attributes







 =

=
otherwise

IAIA
IIA

;1

),value(),value(;0
),,diff(

21

21

)min()max(

),value(),value(
),,diff(

21

21
AA

IAIA
IIA

−

−
=


=

=
a

1i

IIA ),,diff()I,(I 2121

for numerical attributes

distance between two instances

unknown values of attributes

Function diff



Extension ReliefF

• multi-class problems

• incomplete and noisy data

• robust

• uses k nearest instances from all the classes



The algorithm ReliefF

Input:  set of instances <xi, i>   

Output: the vector W of  attributes’ evaluations  
 

for v:=1 to a do Wv := 0.0; 

for i := 1 to m do begin 

randomly select an instance Ri 

find k nearest hits H  

for each class t  Ri, do  

     from class t find k nearest misses M(t) 

for v := 1 to a do 

 update Wv  according to update formula  

end; 



Update formula



= −

+−=

c

Rt
t i

ivt

ivvv

i

Rp

tMRAp

m

HRA
m

WW







,

1 , )(1

))(,,con()(1

),,con(
1


=

=
k

j

jiviv SRA
k

SRA
1

),,diff(
1

),,con(



In regression: RReliefF

• after applying the Bayesian rule: P(A|B) = P(A)P(B|A)/P(B)

• we approximate this formula

• unified view on attribute evaluation in classification and regression

W 𝐴 = 𝑃𝑑𝐴|𝑑𝐶 − 𝑃𝑑𝐴|¬𝑑𝐶

Marko Robnik-Šikonja, Igor Kononenko: An adaptation of Relief for attribute estimation in regression. Machine Learning, 
Proceedings of ICML 1997



Feature selection: Embedded methods

25



Regularization for feature selection

• feature selection as part of learning (embedded method)

• loss function is composed of two components: prediction error and 
number/weight of included features

𝐿 𝑋, 𝑌, 𝑓 =෍

𝑖=1

𝑛

𝐼(𝑦𝑖 ≠ 𝑓 𝑥𝑖 ) + 𝜆෍

𝑗=1

𝑎

𝐼(𝐴𝑗 ∈ 𝑋)

• in regression we get similar expressions for ridge regression and lasso

26



Ridge regression
• Ordinary Least Squares (OLS) estimates βs by minimizing

• Ridge regression minimizes a slightly different equation 

27



Ridge regression adds a penalty on βs ! 
• The effect of this equation is to add a penalty of the form 

where the tuning parameter λ is a positive value. 

• This has the effect of “shrinking” large values of βs towards zero.

• It turns out that such a constraint should improve the fit, because shrinking the 
coefficients can significantly reduce their variance

• Notice that when λ = 0, we get the OLS!  

28



Credit data: ridge regression

• As λ increases, the standardized coefficients shrink towards zero.

29



Why can shrinking towards zero be a good thing?

• It turns out that the OLS estimates generally have low bias but can be highly 
variable. In particular when n and p are of similar size or when 
n < p, then the OLS estimates will be extremely variable.

• The penalty term makes the ridge regression estimates biased  but can also 
substantially reduce variance

• Thus, there is a bias/variance trade-off

30



Ridge regression bias / variance
• Black: Bias

• Green: Variance

• Purple: MSE

• Increase of        
increases bias but 
decreases variance

31



Bias  / variance trade-off

• In general, the 
ridge regression 
estimates will be 
more biased 
than the OLS 
ones but have 
lower variance

• Ridge regression 
will work best in 
situations where 
the OLS 
estimates have 
high variance

32



Computational advantages of ridge regression

• If number of features p is large, then using the best subset selection 
approach requires searching through enormous numbers of possible 
models

• With ridge regression, for any given λ, we only need to fit one model 
and the computations turn out to be very simple

• Ridge regression can even be used when p > n, a situation where OLS 
fails completely!      

33



The LASSO method

• Ridge regression isn’t perfect

• One significant problem is that the penalty term will never force any of 
the coefficients to be exactly zero. Thus, the final model will include all 
variables, which makes it harder to interpret 

• A more modern alternative is the LASSO

• The LASSO works in a similar way to ridge regression, except it uses a 
different penalty term 

34



LASSO’s Penalty Term
• Ridge Regression minimizes

• The LASSO estimates the βs by minimizing the  

35



The difference between ridge regression and lasso

• This seems like a very similar idea but there is a big 
difference.

• Using LASSO penalty, it could be proven mathematically that 
some coefficients end up being set to exactly zero.

• With LASSO, we can produce a model that has high 
predictive power and it is simple to interpret.

36



Credit data: Ridge and LASSO

37



Selecting the tuning parameter λ

• We need to decide on a value for λ

• Select a grid of potential values, use cross validation to estimate the error rate 
on test data (for each value of λ) and select the value that gives the least error 
rate.

38



Feature selection: Wrapper methods

39



Wrapper approach

start with an empty set of features S={} // forward selection

repeat

add all unused features one by one to S

train a prediction model with each set S

evaluate each prediction model

keep the best added feature in S

until all features are added to S

return the best set of features encountered

• high computational load but effective for a given learning model; attention to 
data overfitting

• how would backward selection differ?
40



Model evaluation

41



Model evaluation metrics

• Evaluation metrics: How can we measure accuracy?  Other metrics to consider?

• Regression: MSE, MAE

• Classification:  accuracy, sensitivity, specificity, AUC, precision, recall

• Comparing classifiers:

• Mean and confidence intervals

• Cost-benefit analysis and ROC Curves

• Rank-based tests (Friedman/Nemenyi)

• Bayesian (hierarchical) tests

42



Classifier evaluation metrics: 
confusion matrix aka missclassification matrix

Actual class\Predicted 
class

buy_computer 
=  yes

buy_computer 
= no

Total

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

Total 7366 2634 10000

• Given m classes, an entry, CMi,j in a confusion matrix indicates # of 
instances in class i that were labeled by the classifier as class j

• May have extra rows/columns to provide totals

Confusion Matrix:
Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

43



Classification accuracy, error rate

• Classifier Accuracy (CA), or recognition rate: percentage of test set 
instances that are correctly classified

Accuracy = (TP + TN)/All

• Error rate: 1 – accuracy, or  Error rate = (FP + FN)/All

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

44



Sensitivity and specificity

Class Imbalance Problem: 

One class may be rare, e.g. fraud, or HIV-positive

Significant majority of the negative class and minority of the positive class

Sensitivity: True Positive recognition rate

Sensitivity = TP/P

Specificity: True Negative recognition rate

Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

45



Precision, recall and F-measures

• Precision: exactness, i.e what % of instances the classifier labeled as 
positive are actually positive
Precision = TP/P’

• Recall: completeness, i.e what % of positive instances did the 
classifier label as positive?
Recall = TP / P (the same as sensitivity)

• Perfect score is 1.0

• Inverse relationship between precision & recall
•
F measure (F1 or F-score): harmonic mean of precision and recall,

• Fß:  weighted measure of precision and recall
• assigns ß times as much weight to recall as to precision

46



Example: precision and recall 

• Precision = 90/230 = 39.13%             Recall = 90/300 = 30.00%

47

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity)

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)



Multiclass evaluation

• no problems for classification accuracy

• most other measures assume binary class, e.g., precision, recall, F1

• multiclass extensions simulate binary case

• macro average: 
• compute several one-versus-all scores and average

• assumes balanced class distribution, gives equal weight to each class

• micro average
• computes TP, FP, TN, FN for each class separately and then compute the measure

• assumes all instances are of the same importance, in case of imbalanced classes 
this might be problematic

48



Multiclass example

• Let us compute precision P =TP / (TP+FP). 

• Let us assume multi-class classification system with four classes and the 
following numbers when tested:

• Class A: 1 TP and 1 FP

• Class B: 10 TP and 90 FP

• Class C: 1 TP and 1 FP

• Class D: 1 TP and 1 FP

• P(A) = P (C) =P(D) = 0.5, whereas P(B)=0.1.

• A macro-averaged precision: Pmacro = (0.5+0.1+0.5+0.5) / 4 = 0.4
• A micro-averaged precision: Pmicro = (1+10+1+1) / (2+100+2+2) = 0.123

49



Error depends on decision threshold

• Example: False positive and false negative rate are computed based 
on probabilities returned by classifier

P(Class=True |X1, X2, …) ≥ 0.5

• We can change the two error rates by changing the threshold from 
0.5 to some other value in [0, 1]:

P(Class=True |X1, X2, ….) ≥ threshold

50



Varying the threshold

• To reduce false negative rate, we would chose threshold other than 0.5, e.g., threshold  ≤ 0.1

51



ROC curve
• ROC curve shows both TP 

rate and FP rate 
simultaneously

• To summarize overall 
performance, we also use 
area under the ROC curve 
(AUC)

• The larger the AUC the 
better is the classifier. Why? 
What would be an ideal ROC 
curve?

52



Issues affecting model selection

• Accuracy

• classification: classification accuracy, AUC, F1

• regression: MSE, MAE

• Speed

• time to construct the model (training time)

• time to use the model (classification/prediction time)

• Robustness: handling noise and missing values

• Scalability: efficiency in disk-resident databases 

• Interpretability

• understanding and insight provided by the model

• other measures, e.g., goodness of rules, such as decision tree size or compactness of 

classification rules

53



Unsupervised feature selection

• criterion: preserve similarity between instances

• Example: SPEC, spectral feature selection

Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning. In Proceedings of ICML 2007, pp. 1151-
1157. 

54



Semi-supervised feature selection

• typically a small sample of labelled and a 
large sample of unlabeled data is available

• principle: use the label information of 
labeled data and data distribution or local 
structure of both labeled and unlabeled 
data to evaluate feature relevance

55

image by Techerin, Wikipedia
Cheng, H., Deng, W., Fu, C., Wang, Y. and Qin, Z., 2011. Graph-based semi-supervised feature selection with application to automatic 
spam image identification. In Computer Science for Environmental Engineering and EcoInformatics (pp. 259-264). 



Stability of feature selection
• for high dimensional small sample data, the stability of feature selection is a 

pressing issue, e.g., in microarray data, we might get similar classification 
accuracy with different sets of features

• Solution: ensemble approach:
1. produce diverse feature sets

• different feature selection techniques, 
• instance-level perturbation
• feature-level perturbation
• stochasticity in the feature selector, 
• Bayesian model averaging 
• combinations of the above techniques

2. aggregate them
• weighted voting
• counting

56



Dimensionality reduction

57



Feature Selection vs Feature Extraction

• Feature selection: Choosing k<d important features, ignoring the 
remaining d – k

Subset selection algorithms

• Feature extraction: Project the 

original xi , i =1,...,d dimensions to 

new k<d dimensions, zj , j =1,...,k

• Typical examples: Principal components analysis (PCA), linear 
discriminant analysis (LDA), factor analysis (FA)

58



Feature reduction 

 approximation of p-dimensional space of 

matrix X with lower dimensional space

 also called feature extraction

 Linear transformation: rotation in the direction 

of largest variance

59



Principle components analysis

 principle components analysis, PCA

we iteratively find the orthogonal axes of the largest 

variance

we use the new dimensions to approximate the 

original space

60



Principal Components Analysis (PCA)

 Find a low-dimensional space such that when x is projected there, 
information loss is minimized.

 The projection of x on the direction of w is: z = wTx

 Find w such that Var(z) is maximized

Var(z) = Var(wTx) = E[(wTx – wTμ)2] 

= E[(wTx – wTμ)(wTx – wTμ)]

= E[wT(x – μ)(x – μ)Tw]

= wT E[(x – μ)(x –μ)T]w = wT ∑ w

where Var(x)= E[(x – μ)(x –μ)T] = ∑

61
See Alpaydın 2010 Introduction to Machine Learning 2e 



( ) ( )01 122222
2

−−−− wwwwww
w

TTT max

62

 Maximize Var(z) subject to ||w||=1

∑w1 = αw1 that is, w1 is an eigenvector of ∑

Choose the one with the largest eigenvalue for Var(z) 
to be max

 Second principal component: Max Var(z2), s.t., ||w2||=1 and orthogonal to 
w1

∑ w2 = α w2 that is, w2 is another eigenvector of ∑

and so on.

( )11111
1

−− wwww
w

TT max



What PCA does

z = WT(x – m)

where the columns of W are the eigenvectors of ∑, 

and m is sample mean

Centers the data at the origin and rotates the axes

63



 Proportion of Variance (PoV) explained

when λi are sorted in descending order 

 Typically, stop at PoV>0.9

 Scree graph plots of PoV vs k, stop at “elbow”

How to choose k ?

dk

k





+++++

+++





21

21

64



65



66



Neighbourhood preserving dimensionality 
reduction

• also called local embeddings

• SNE - Stochastic Neighbor Embedding

• t-SNE (t-distributed SNE)

67



Linear and local embedding

• PCA tries to find a global structure
• Low dimensional subspace

• Can lead to local inconsistencies

• Far away point can become nearest neighbors

• t-SNE is an alternative dimensionality reduction algorithm.

• t-SNE tries to preserve local structure
• Low dimensional neighborhood should be the same as the original neighborhood.

• Unlike PCA almost only used for visualization

• No easy way to embed new points

68



PCA 2d 
projection 
of MNIST 
dataset

69



t-SNE 2d
projection 
of MNIST 
dataset

70



Stochastic Neighbor Embedding (SNE)

• SNE basic idea:
• ”Encode” high-dimensional neighborhood information as a distribution

• Intuition: Random walk between data points.
• High probability of jumping to a close point

• Find low dimensional points such that their neighborhood 
distribution is similar.

• How do you measure the distance between distributions?

• Most common measure: KL divergence

71



Neighborhood Distributions

• Consider the neighborhood around an input data point xi ∈
Rd

• Imagine that we have a Gaussian distribution centered 
around xi

• Then the probability that xi chooses some other data point xj

as its neighbor is in proportion with the density under this 
Gaussian

• A point closer to xi will be more likely than one further away

72



SNE objective
• Given x1, .., xn ∈ RD we define the distribution of distances between points Pij

• Goal: Find good embedding y1, .., yn ∈ Rd for some d < D (normally 2 or 3)

• How do we measure an embedding quality?

• For points y1, .., yn ∈ Rd we can define distribution Qij similarly to Pij

• Optimize Q to be close to P
• Minimize KL-divergence

• The embeddings y1, .., yn ∈ Rd are the parameters we are optimizing.
• How do you embed a new point? No embedding function, but there are ways.

73



Kullback–Leibler divergence

• KL divergence measures distance between two distributions, P and Q:

• Not a metric function - not symmetric!

• Code theory intuition: If we are transmitting information that is distributed
according to P, then the optimal (lossless) compression will need to send on
average H(P) bits.

• What happens if you expect P (and design your compression accordingly), but
the actual distribution is Q?
• will send on average H(Q) + KL(Q||P)
• KL(Q||P) is the ”penalty” for using the wrong distribution

74



Crowding Problem

• In high dimension we have more room, points can have a lot of different
neighbors

• In 2D a point can have a few neighbors at distance one all far from each
other - what happens when we embed in 1D?

• This is the ”crowding problem” - we don’t have enough room to
accommodate all neighbors.

• This is one of the biggest problems with SNE.

• t-SNE solution: Change the Gaussian in Q to a heavy-tailed distribution.
• if Q changes slower, we have more ”wiggle room” to place points at.

75



CNN features 
t-SNE 2d 
embedding

76
http://cs.stanford.edu/people/karpathy/cnnembed



CNN features 
t-SNE 2d 
embedding

77
https://lvdmaaten.github.io/tsne



t-SNE summary

• t-SNE is a great way to visualize high-dimensional data

• Helps understand ”black-box” algorithms like DNN.

• Reduced ”crowding problem” with heavy-tailed distribution.

• Non-convex optimization - solved by gradient descent (GD) with momentum.

• Maaten, L.v.d. and Hinton, G., (2008) Visualizing data using t-SNE. Journal of 
Machine Learning Research, Vol 9(Nov), pp. 2579—2605, [PDF]

• Wattenberg, M., Viégas, F. and Johnson, I. (2016) How to Use t-SNE 
Effectively, Distil https://distill.pub/2016/misread-tsne/

• Poličar, P. OpenTSNE, https://github.com/pavlin-policar/openTSNE

78

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://distill.pub/2016/misread-tsne/
https://github.com/pavlin-policar/openTSNE

