
Neural networks

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Intelligent Systems, Edition 2024

Topics overview

• basics of artificial neural networks

• backpropagation

• deep learning

• convolutional neural networks

• autoencoders

• generative adversarial networks

• robustness

We will mention transformer networks in the natural language processing topic.

2

Artificial neural networks

• many approaches, we shall cover the basic ideas

• currently very strong interest, especially in deep neural networks

• http://www.deeplearningbook.org (from 2016, see also other newer
literature in the slides 01)

3

http://www.deeplearningbook.org/

Artificial neural networks:
brain analogy

4learning: error backpropagation

Neuron
• Computational units, passing messages (information) in the network,

typically organized into layers

5

Activation functions

• examples: step function, sigmoid (logistic)

6

Activation functions

• ReLU (rectified linear unit)

f(x) = max(0, x)

• softplus / approximation of ReLU with
continuous derivation

f(x) = ln(1+ex)

• ELU (Exponential Linear Unit)

• Leaky ReLU: like ReLU but small slope for
negative values instead of a flat slope

• many others

7

Historically: Perceptron

Why nonlinear?

What is a derivative of a sigmoid?

A multi-layer feed-forward NN

10

Output layer

Input layer

Hidden layer

Output vector

Input vector: X

wij

How a multi-layer NN works?

• The inputs to the network correspond to the attributes measured for each training tuple

• Inputs are fed simultaneously into the units making up the input layer

• They are then weighted and fed simultaneously to a hidden layer

• The number of hidden layers is arbitrary; if more than 1 hidden layer is used, the network is

called deep neural network

• The weighted outputs of the last hidden layer are input to units making up the output layer,

which emits the network's prediction

• The network is feed-forward: None of the weights cycles back to an input unit or to an output

unit of a previous layer

• If we have backwards connections the network is called recurrent neural network

• From a statistical point of view, networks perform nonlinear regression: Given enough hidden

units and enough training samples, they can closely approximate any function

11

Feed-Forward Network

• neurons are activated progressively throug layers from
input to output

12

Feed-Forward Network
• Values are propagated through the network to the output, which

returns the prediction

13
Next 6 slides by Andrew Rosenberg

Feed-Forward Networks

14

Feed-Forward Networks

15

Feed-Forward Networks

16

Feed-Forward Networks

17

Feed-Forward Networks

18

Softmax is often used for the last layer

• normalizes the output scores to be
a probability distribution (values
between 0 and 1, the sum is 1)

19

Criterion function
• together with softmax we

frequently use cross entropy as
cost function C

20

Backpropagation learning algorithm for NN

• Backpropagation: a neural network learning algorithm

• Started by psychologists and neurobiologists to develop and test computational

analogues of neurons

• A neural network: a set of connected input/output units where each connection has

a weight associated with it

• During the learning phase, the network learns by adjusting the weights so as to be

able to predict the correct class label of the input tuples

• Also referred to as connectionist learning due to the connections between units

21

Backpropagation algorithm

• Iteratively process a set of training tuples & compare the network's prediction with the

actual known target value

• For each training tuple, the weights are modified to minimize the mean squared error

between the network's prediction and the actual target value

• Modifications are made in the “backwards” direction: from the output layer, through each

hidden layer down to the first hidden layer, hence “backpropagation”

• Steps

• Initialize weights to small random numbers, associated with biases

• Propagate the inputs forward (by applying activation function)

• Backpropagate the error (by updating weights and biases)

• Terminating condition (when error is very small, etc.)

22

Gradient descent (GD)

•Gradient descent is an efficient local optimization in ℝ𝑛

•Local minimum of function f: ℝ𝑛 → ℝ is a point x
for which f(x) ≤ f(x′) for all x′ that are “near” x
•Gradient ∇𝑓 𝑥 is a function ∇𝑓: ℝ𝑛 → ℝ𝑛 comprising n partial
derivatives:

∇𝑓 𝑥 = (
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
)

•The GD optimization moves in the direction of -∇𝑓 𝑥

Ilustration of GD

GD
algorithm

GRADIENT-DESCENT(f, x0, γ, T) {

// function f, initial value x0, fixed step size γ, number of steps T

x_best = x = x0 ; // n-dimensional vectors, initially set to the initial value

f_best = f_x = f(x_best) ;

for t = 0 to T – 1 do {

x_next = x – γ・ ∇f(x); // ∇f(x), x, and x_next are n-dimensional

f_next = f(x_next)

if (f_next < f_x)

x_best = x_next ;

x = x_next ;

f_x = f_next ;

}

return x_best ;

}

Chain rule of derivation

• In a network, the output of each neuron is a function of activation function and all its
inputs, where the inputs may again be composite functions of neurons in previous layers

• To compute a gradient of a composite function, we use the chain rule of derivation

𝑓 𝑔 𝑥
′
= 𝑓′ 𝑔 𝑥 𝑔′(𝑥)

Error Backpropagation

• We will do gradient descent on the whole network.

• Training will proceed from the last layer to the first.

27Next 18 slides by Andrew Rosenberg

Error Backpropagation

• Introduce variables over the neural network

28

Error Backpropagation

• Introduce variables over the neural network
• Distinguish the input and output of each node

29

Error Backpropagation

30

Error Backpropagation

31

Training: Take the gradient of the last component and iterate backwards

Error Backpropagation

32

Empirical Risk Function

Error Backpropagation

33

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

34

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

35

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

36

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

37

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

38

Optimize last hidden weights wjk

Error Backpropagation

39

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

40

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

41

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

42

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

43

Repeat for all previous layers

Error Backpropagation

44

Now that we have well defined gradients for each parameter, update using Gradient Descent

Error Back-propagation
• Error backpropagation unravels the multivariate chain

rule and solves the gradient for each partial component
separately.

• The target values for each layer come from the next layer.
• This feeds the errors back along the network.

45

Learning with error backpropagation

• Backpropagation

• randomly initialize parameters (weights)

• compute error on the output

• compute contributions to error, 𝛿𝑛, on each step
backwards

• step

• epoch

• batch

• minibatch

46

Defining a network topology

• Decide the network topology:

Specify # of units in the input layer, # of hidden layers (if > 1), # of units in each

hidden layer, and # of units in the output layer

• Normalize the input values for each attribute measured in the training tuples to

[0.0—1.0]

• One input unit per discrete attribute value, 1-hot encoded

• For classification and more than two classes, one output unit per class is used

• Once a network has been trained and its accuracy is unacceptable, repeat the

training process with a different network topology or a different set of initial

weights

47

Neural network as a classifier for tabular data
• Weakness

• Long training time

• Require a number of parameters typically best determined empirically, e.g., the network topology
or “structure.”

• Poor interpretability: difficult to interpret the symbolic meaning behind the learned weights and
of “hidden units” in the network

• Easy to overfit without evaluation set

• Strength

• High tolerance to noisy data

• Good generalization to untrained patterns

• Well-suited for continuous-valued inputs and outputs

• Successful on an array of real-world data, especially images, text, and time-series, e.g., one of
early successful deep networks was applied to hand-written letters

• Algorithms are inherently parallel

• Builds more advanced representation

• Techniques exist for the extraction of explanations from trained neural networks

48

Efficiency and interpretability

• Efficiency of backpropagation:

Each epoch (one iteration through the training set) takes O(|D| * w), with |D| tuples

and w weights, but # of epochs can be exponential to n, the number of inputs, in

worst case

• For easier comprehension: Rule extraction by network pruning

• Simplify the network structure by removing weighted links that have the least

effect on the trained network

• Then perform link, unit, or activation value clustering

• The set of input and activation values are studied to derive rules describing the

relationship between the input and hidden unit layers

• Sensitivity analysis: assess the impact that a given input variable has on a network

output. The knowledge gained from this analysis can be represented in rules

• Recent attempts tend to learn interpretation along learning

49

Overfitting and model complexity

• which curve is
more plausible
given the data?

• overfitting

• neural nets are
especially prone
to overfitting

• why?

50

Prevention of overfitting

• Weight-decay

• Weight-sharing

• Early stopping

• Model averaging

• Bayesian fitting of neural nets

• Dropout

• Generative pre-training

• etc.

51

Deep learning = learning of hierarchical represenation

52

Types of NN architectures

• Historically, feed-forward networks were the most commonly used; here
neurons are activated progressively through layers from input to output

• However, we often combine different types of layers
• Examples of other architectures: recurrent, convolutional, transformer

53

Recurrent networks

• back connections

• biologically more realistic

• store information from the past

• more difficult to learn

54

Another option: Level jumping

55

Recurrent networks
for sequence learning

• unrolled network

• equivalent to deep
networks with one
hidden level per time
slot

• but: hidden layers share
weight (less parameters)

56

Convolutional neural networks (CNN)

57

Convolution
• an operation on two functions

(f and g) that produces a third
function expressing how the shape of
one is modified by the other.

• for discrete functions

58

Convolutional Neural Network (CNN)

• Convolutional Neural Networks are inspired by mammalian visual
cortex.
– The visual cortex contains a complex arrangement of cells, which are

sensitive to small sub-regions of the visual field, called a receptive field.
These cells act as local filters over the input space and are well-suited to
exploit the strong spatially local correlation present in natural images.

– Two basic cell types:
• Simple cells respond maximally to specific edge-like patterns within their receptive

field.

• Complex cells have larger receptive fields and are locally invariant to the exact
position of the pattern.

59

Convolutional neural networks (CNN)

• currently, the most successful
approach in image analysis,
successful in language

• idea: many copies of small
detectors used all over the
image, recursively combined,

• detectors are learned,
combination are learned

6
0

2d convolution for images

61

Basic Idea of CNNs

Input

Hidden layer

Basic Idea of CNNs

Input

Hidden layer

Basic Idea of CNNs

Input

Hidden layer

Basic Idea of CNNs

Input

Hidden layer

Convolutional Network

• The network is not fully
connected.

• Different nodes are
responsible for different
regions of the image.

• This allows for robustness
to transformations.

• Convolution is combined
with subsampling.

66

CNN Architecture: Convolutional Layer

• The core layer of CNNs
• The convolutional layer consists of a set of filters.

– Each filter covers a spatially small portion of the input data.

• Each filter is convolved across the dimensions of the input data,
producing a multidimensional feature map.
– As we convolve the filter, we are computing the dot product between the

parameters of the filter and the input.

• Intuition: the network will learn filters that activate when they see
some specific type of feature at some spatial position in the input.

• The key architectural characteristics of the convolutional layer is
local connectivity and shared weights.

67

Neural implementation of convolution

• weights of the same colors have
equal weights

• adapted backpropagation

• images: 2d convolution

• languages: 1d convolution

68

CNN Architecture: Pooling Layer

• Intuition: to progressively reduce the spatial size of the representation, to reduce the
amount of parameters and computation in the network, and hence to also control
overfitting

• Pooling partitions the input image into a set of non-overlapping rectangles and, for
each such sub-region, outputs the maximum value of the features in that region.

69

Input

CNN: pooling

• reduces the number of connections to the next layer (prevents
the excessive number of parameters, speeds-up learning,
reduces overfitting)

• max-pooling, min-pooling, average-pooling

• the problem: after several layers of pooling, we lose the
information about the exact location of the recognized pattern
and about spatial relations between different patterns and
features, e.g., a nose on a forehead

70

Building-blocks for CNN’s

71

Each sub-region yields a
feature map, representing
its feature.

Images are segmented into
sub-regions.

Feature maps are
trained with neurons.

Feature maps of a larger
region are combined.

Shared weights

Full CNN

72

pooling

pooling

Convolutional networks: illustration
on image recognition

• a useful feature is learned and used on several
positions

• prevents dimension hopping

• max-pooling

73

CNN success: LeNet

• handwritten digit recognition by Yann LeCun,

• several hidden layers

• several convolutional filters

• pooling

• several other tricks

74

LeNet5 architecture

• handwritten digit recognition

75

Hand-written Digit Recognition

• Input:

76

Errors of LeNet5

• 80 errors in
10,000 test
cases

77

Benefits of CNNs

• The number of weights can be much less than 1 million for a 1
mega pixel image.

• The small number of weights can use different parts of the
image as training data. Thus we have several orders of
magnitude more data to train the fewer number of weights.

• We get translation invariance for free.

• Fewer parameters take less memory and thus all the
computations can be carried out in memory in a GPU or across
multiple processors.

1d convolution for text

79

• convolution
on words,
lemmas, or
characters

Example: what the following CNN returns 1/2

80

We have a convolutional neural network for images of 5 by 5 pixels.
In this network, each hidden unit is connected to a different 4 x 4 region of the input image:
The first hidden unit, h1, is connected to the upper left 4x4 portion of the input image (as shown).
The second hidden unit, h2, is connected to the upper right 4x4 portion of the input image (as shown).
The third hidden unit, h3, is connected to the lower left 4x4 portion of the input image (not shown in the diagram).
The fourth hidden unit, h4, is connected to the lower right 4x4 portion of the input image (not shown in the diagram).
Because it's a convolutional network, the weights (connection strengths) are the same for all hidden units: the only
difference between the hidden units is that each of them connects to a different part of the input image.

In the second diagram, we show the array of weights, which are the same for each of the four hidden units.
For h1, weight w11 is connected to the top-left pixel, i.e. x11, while for hidden unit h2, weight w11 connects to the pixel
that is one to the right of the top left pixel, i.e. x12.

Imagine that for some training case, we have an input image where each of the black pixels in the top diagram
has value 1, and each of the white ones has value 0. Notice that the image shows a "3" in pixels.

The network has no biases. The weights of the network are given as follows:
w11=1w12=1w13=1w14=0w21=0w22=0w23=1w24=0w31=1w32=1w33=1w34=0w41=0w42=0w43=1w44=0
The hidden units are linear.

For the training case with that "3" input image, what is the output y1, y2, y3, y4 of each of the four hidden units?

Example: what the following CNN returns 2/2

81

Autoencoders

• Autoencoders are designed to reproduce their input, especially for
images.

• The key point is to reproduce the input from a learned encoding.

• The loss function is the reproduction error

https://www.edureka.co/blog/autoencoders-tutorial/

Autoencoders: structure

• Encoder: compress input into a latent-space of usually smaller
dimension. h = f(x)

• Decoder: reconstruct input from the latent space. r = g(f(x))
with r as close to x as possible

https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f

Autoencoder applications: denoising

• Denoising: input clean image + noise and train to reproduce
the clean image.

https://www.edureka.co/blog/autoencoders-tutorial/

Denoising autoencoders

• Basic autoencoder trains to minimize the loss between x and
the reconstruction g(f(x)).

• Denoising autoencoders train to minimize the loss between x
and g(f(x+w)), where w is random noise.

• Same possible architectures, different training data.

https://blog.keras.io/building-autoencoders-in-keras.html

Autoencoder applications: colorization

• Image colorization: input black and white and train to produce
color images

https://www.edureka.co/blog/autoencoders-tutorial/

Autoencoder applications: watermark removal

• Watermark removal

https://www.edureka.co/blog/autoencoders-tutorial/

Properties of autoencoders

• Data-specific: Autoencoders are only able to compress data
similar to what they have been trained on.

• Lossy: The decompressed outputs will be degraded compared
to the original inputs.

• Learned automatically from examples: It is easy to train
specialized instances of the algorithm that will perform well on
a specific type of input.

https://www.edureka.co/blog/autoencoders-tutorial/

Bottleneck layer (undercomplete)

• Suppose input images are n x n and the latent space is
m < n x n.

• Then the latent space is not sufficient to reproduce all images.

• Needs to learn an encoding that captures the important
features in training data, sufficient for approximate
reconstruction.

GANs

• Generative

• Learn a generative model

• Adversarial

• Trained in an adversarial setting

• Networks

• Use Deep Neural Networks

90

Why Generative Models?

• We have only seen discriminative models so far
• Given an image X, predict a label Y
• Estimates P(Y|X)
• Discriminative models have several key limitations
• Cannot model P(X), i.e. the probability of seeing a certain image
• Thus, can’t sample from P(X), i.e. can’t generate new images
• Generative models (in general) cope with all of above
• Can model P(X)
• Can generate new images

91

What GANs can do

92

GANs in action

93

Adversarial Training

• Generator: generate fake samples, tries to fool the
Discriminator

• Discriminator: tries to distinguish between real and fake
samples

• Train them against each other

• Repeat this and we get better Generator and Discriminator

94

95

96

97

Diffusion models intro

• Recent superior image generators,

• E.g., DALL-E is prompt based

• "a bowl of soup that is a portal
to another dimension as digital art".

98

Idea of diffusion models

• generate data similar to the data on which they are trained

• destroy training data through the successive addition of
Gaussian noise

• then learning to recover the data by reversing this noising
process.

• After training, generate data by passing randomly sampled
noise through the learned denoising process.

99

Diffusion models 1/2

• A diffusion model maps to the latent space using a fixed
Markov chain. This chain gradually adds noise to the data in
order to obtain the approximate posterior.

100

Diffusion models 2/2

• A diffusion model is trained to reverse the process

101

Sources
• Ian Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org

• PyTorch

• HuggingFace library

• TensorFlow

102

http://www.deeplearningbook.org/

Deep learnig
sucesses

103

Weaknesses of deep learning

104

Attacks on
neural
networks

105

Failures on out-
of-distribution
examples

106

Michael A. Alcorn, Qi Li, Zhitao Gong,
Chengfei Wang, Long Mai, Wei-Shinn
Ku, Anh Nguyen (2018):
Strike (with) a Pose: Neural Networks
Are Easily Fooled by Strange Poses of
Familiar Objects. arXiv:1811.11553

