
Ensemble methods

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Intelligent Systems, Edition 2024

Contents

• about ensembles: how & why

• bagging and random forests

• boosting

• stacking

• a few other ideas

2

How ensembles works?

• learn large number of basic (simple) classifiers

• merge their predictions

• the most successful methods
• bagging (Breiman, 1996)

• boosting (Freund & Shapire, 1996)

• random forest (Breiman, 1999)

• XGBoost (eXtreme Gradient Boosting) (Chen & Guestrin, 2016)

3

Why ensembles work?

• we need different classifiers
• different in a sense that they produce correct predictions on different

instances

• the law of large numbers does the rest

• guidelines for basic classifiers
• different

• as strong as possible, but at least weak

• a weak classifier is an expression from computational learning
theory (COLT), it means a classifier whose performance is at
least ∈ > 0 better than a random classifier

4

Bagging and random forests

• Bagging
• sample selection with bootstrapping

• Bagging for regression trees

• Bagging for classification trees

• Out-of-bag error estimation

• Variable importance: relative influence plots

• Random Forests

5

Bagging

• Decision trees suffer from high variance!
• If we randomly split the training data into 2 parts, and fit decision trees on both parts, the

results of different runs could be quite different

• We would like to have models with low variance

• To solve this problem, we can use bagging (bootstrap aggregating).

6

Bootstrapping
• Resampling of the observed dataset (and of equal size to the observed

dataset), each of which is obtained by random sampling with
replacement from the original dataset.

7

• Draw instances from a dataset with replacement

• Probability that we do not pick an instance after N
draws

that is, only 63.2% of instances are used in one draw

Bootstrapping

3680
1

1 1 .=







− −e

N

N

8

What is bagging?

• Bagging is a powerful idea based on two things:

• Averaging: reduces variance!

• Bootstrapping: plenty of training datasets!

• Why does averaging reduces variance?

• Averaging a set of observations reduces variance.

• Given a set of n independent observations Z1, …, Zn, each with
variance σ2, the variance of the mean 𝑍 of the observations is
given by Τ𝜎2

𝑛 .

9

How does bagging work?

• Generate B different bootstrapped training datasets

• Train the statistical learning method on each of the B training datasets, and
obtain the prediction

10

Bagging for regression trees

• Construct B regression trees using B bootstrapped training datasets

• Average the resulting predictions

• The trees are not pruned, so each individual tree has high variance but low bias.

• Averaging these trees reduces variance, and thus we end up lowering both
variance and bias ☺

11

Bagging for classification trees

• Construct B decision trees using B bootstrapped training datasets

• For prediction, there are two approaches:
1. Record the class that each bootstrapped data set predicts and provide an overall prediction

to the most commonly occurring one (majority vote).

2. If our classifier produces probability estimates, we can just average the probabilities and
then predict to the class with the highest probability.

• Both methods work well.

12

A comparison of error rates

13

• Here the green line
represents a simple majority
vote approach

• The purple line corresponds
to averaging the probability
estimates.

• Both do far better than a
single tree (dashed red) and
get close to the Bayes error
rate (dashed grey).

Out-of-bag error estimation

• Since bootstrapping involves random selection of subsets of observations to build
a training data set, then the remaining non-selected part could be the testing
data.

• On average, each bagged tree makes use of around 1- 1/e ≈ 63% of the
observations, so we end up having 1/e ≈ 37% of the observations useful for
testing

14

Variable importance measure

• Bagging typically improves the accuracy over prediction using a single tree, but it
is now hard to interpret the model!

• We have hundreds of trees, and it is no longer clear which variables are most
important to the procedure

• Thus bagging improves prediction accuracy at the expense of interpretability

• But, we can still get an overall summary of the importance of each predictor using
relative influence plots

15

Relative influence plots

• How do we decide which variables are most useful in predicting the
response?
• We can compute something called relative influence plots.

• These plots give a score for each variable.

• These scores represents the decrease in MSE when splitting on a particular
variable

• A number close to zero indicates the variable is not important and could be
dropped.

• The larger the score the more influence the variable has.

16

Example: Housing data
• Median Income is

by far the most
important variable.

• Longitude, Latitude
and Average
occupancy are the
next most
important.

17

Random forests

• It is a very efficient statistical learning method

• It builds on the idea of bagging, but it provides an improvement
because it de-correlates the trees

• How does it work?
• Build a number of decision trees on bootstrapped training sample,

• When building these trees, each time a split in a tree is considered, a random
sample of m predictors is chosen as split candidates from the full set of p
predictors.

• Usually

18

pmpm 2log1or +

Why are we considering a random sample of m predictors
instead of all p predictors for splitting?

• Suppose that we have a very strong predictor in the data set along with a number
of other moderately strong predictors, then in the collection of bagged trees,
most or all of them will use the very strong predictor for the first split!

• All bagged trees will look similar. Hence all the predictions from the bagged trees
will be highly correlated

• Averaging many highly correlated quantities does not lead to a large variance
reduction, and thus random forests “de-correlates” the bagged trees leading to
more reduction in variance

19

Properties

• low classification (and regression) error

• no overfitting

• robust concerning the noise and the number of attributes

• relatively fast

• learning instances not selected with bootstrap replication are used for
evaluation of the tree (oob = out-of-bag evaluation)

20

Out-of-bag evaluation

• on average 1/e ~ 37% of the learning set is not used to train
each of the basic classifiers

• classification margin

• mr is estimated with all classifiers where x is in oob set

• strength of the forest = average margin over training or OOB
set

• correlation of the trees in forest

• we want high strength and low correlation

))((max))((),(
1j

jhPyhPymr
c

yj

=−==


=

xxx

2())(

)var(

hstd

mr
=

21

OOB-error estimate

22

• with large number of
trees, the OOB estimate is
roughly equivalent to the
CV error estimate

• computationally much
cheaper than CV

• still overly optimistic

Heart data set

RF attribute evaluation

• evaluation of attribute A is the difference between
• strength of the forest and

• strength of the forest when values of A are randomly shuffled

• evaluated on the OOB set

• detects also strong conditional dependencies

• works also on an instance-level like nomogram (evaluates only the
trees where the instance is in the OOB set)

23

Similarity of instances

• build instance similarity matrix

• when two instances end in the same leaf of the tree we increase their similarity
score

• average over all trees gives similarity measure

• we use that similarity measure to:
• detect outliers

• determine typical cases for each class

• scaling

• missing values

• clustering

• visualization

24

Random forest with different values of “m”
• Notice: when

random forests
are built using
m = p, then this
amounts to
bagging.

26Gene expression data (15 classes)

Boosting
• another ensemble method

• grows trees sequentially: each added tree uses information about
errors of previous trees

27

Pseudocode for boosting in regression

28

Boosting

• each tree takes into account residuals (i.e. errors) of previous trees

• each tree is small, containing only d splits (e.g., d=1, decision stumps)

• learning is slow, controlled by λ

• Parameters of boosting in regression
• The number of trees B, selected with, e.g., CV; boosting can overfit.

• The shrinkage parameter λ, a small positive number (e.g., 0.01 or 0.001),
problem dependent; small λ requires large B to achieve good performance

• The number d of splits in each tree, which controls the complexity of the
boosted ensemble. Often d = 1 works well, but d also controls interaction
order (d splits can contain at most d variables).

29

Boosting performance

30

Gene expression data (15 classes)
error of single tree is approx. 0.24, std. error around 0.02

Boosting in classification

• AdaBoost, Freund & Shapire, ICML, 1996
• training instances are weighted according to the success of

their classification in the previous iteration
• increase weight of misclassified instances

• decrease weight of correctly classified instances

• the learning focus is transferred to the most difficult instances

• final classification is a weighted voting of basic classifiers

• deterministic algorithm, works because training sets are
different

• mostly better than bagging

• this original version can suffer from overfitting but
there are better variants

31

AdaBoost (Freund and Schapire, 1996)

• Given a set of d class-labeled instances, (X1, y1), …, (Xn, yn)

• Initially, all the weights of instances are set the same (1/n)

• Generate k classifiers in k rounds. At round i,

• Instances from D are sampled (with replacement) or reweighted to form a training
set Di of the same size

• Each instance’s chance of being selected is based on its weight

• A classification model Mi is derived from Di

• Its error rate is calculated using Di as a test set

• If an instance is misclassified, its weight is increased, otherwise it is decreased

• Error rate: err(Xj) is the misclassification error of instance Xj.
Classifier Mi error rate is the sum of the weights of the misclassified instances:

• The weight of classifier Mi’s vote is
)(

)(1
log

i

i

Merror

Merror−

 =
d

j

ji errwMerror)()(jX

32

AdaBoost Example

33

XGBoost – eXtreme Gradient Boosting

34

https://xgboost.readthedocs.io/en/latest/build.html#r-package-installation

Chen & Guestrin(2016), XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining https://arxiv.org/abs/1603.02754

https://xgboost.readthedocs.io/en/latest/build.html#r-package-installation
https://arxiv.org/abs/1603.02754

Other possibilities for tree ensembles

• sampling in RF:
• p-sampling without replacement (sampling the proportion of p instances, e.g., p=10%)

• limiting the size of the trees in RF and bagging
• more trees needed

• reduced computational complexity

• regularization

35

Weighting of the trees

• not all trees are equally important (absolutely and in all
parts of an instance space)

• weight the trees according to the data

• assume linear combination of base coefficients

• solve for coefficients a

𝐹(𝑥, 𝑎) = 𝑎0 +෍

𝑗=1

𝑇

𝑎𝑗 𝑡𝑗(𝑥)

36

Penalization

• direct minimization gives poor generalization,
therefore penalize

ො𝐚 = argmin
𝑎

1

𝑁
෍

𝑖=1

𝑛

𝐿 (𝑦𝑖,𝑎0 +෍

𝑗=1

𝑇

𝑎𝑗 𝑡𝑗(𝑥𝑖))

ො𝐚(𝜆) = argmin
𝑎

1

𝑁
෍

𝑖=1

𝑛

𝐿 (𝑦𝑖,𝑎0 +෍

𝑗=1

𝑇

𝑎𝑗 𝑡𝑗(𝑥𝑖)) + 𝜆𝑃(𝐚)

37

Common penalty functions

• ridge regression

• lasso, sure-shrink

• solve with gradient descent algorithms (Friedman & Popescu, 2003)

𝑃2(𝐚) =෍

𝑗=1

𝑇

𝑎𝑗
2

𝑃1(𝐚) =෍

𝑗=1

𝑇

𝑎𝑗

38

Local weighting

• regularization: global importance of base models

• local importance: local regularization, weighting with margin of similar instances

39

Locally weighted voting for RF

• observation: not all trees are equally good in all parts of the problem
space

• opportunity: use OOB instances to locally evaluate the quality of trees

• locality: forest defines the similarity between instances

40

Weighted voting algorithm for RF

• in classification of a new instance
• find t most similar instances

• classify each of the similar instances with the trees where it is in the OOB set,
and record the margin for the trees

• compute weights of the trees as the average recorded margin (for trees with
negative margin set the weight to zero)

• forest classification is the weighted voting of the trees

41Marko Robnik-Šikonja: Improving random forests. In Proceedings of European conference on machine learning ECML’04, pp. 359-370. 2004.

Naïve Bayes based ensembles

• Naive Bayes is a probabilistic classifier

• assuming that the attributes are independent given the class

42

Semi naïve Bayes (SNB)

• besides the class, SNB allows dependence on some attributes

• Example: 1-dependence estimator (ODE), where X1 is “super-parent”

43

AODE ensemble

• Averaged One-Dependence Estimator (AODE) (Webb et al. 2005)

• SPODE: Super-Parent One Dependence Estimator – Semi naive Bayes
where attributes are dependent on class and one more attribute

• AODE is an ensemble of SPODE classifiers, where all attributes in turn
are used in SPODE classifier and their results are averaged

• Compared to naive Bayes, it has higher variance but lower bias

44

Stacking
• A method to combine

heterogeneous predictors

• Predictions of base learners
(level-0 models) are used as
input for meta learner (level-1
model)

• Base learners are usually
different learning schemes

45

Stacking scheme

instance1

BC1

BC2

BCn

meta instances

instance1

0

0.92

0.85

0 0.92 0.85

BC1 BC2 BCn… Class

1

Stacking

instance2

BC1

BC2

BCn

meta instances

instance1

1

0.01

0.23

0 0.92 0.85

BC1 BC2 BCn… Class

1

instance2 1 0.01 0.23 0

Stacking

meta instances

instance1 0 0.92 0.85

BC1 BC2 BCn… Class

1

instance2 1 0.01 0.23 0

Meta Classifier

Actual stacking

• Predictions on the training data can’t be used to generate
data for level-1 model! Why not?

• The reason is that the level-0 classifier that better fit
training data will be chosen by the level-1 model!

• Thus, k-fold cross-validation-like scheme is employed. An
example for k = 3!

train train test

train test train

test train train

test test testMeta Data

Stacking meta-learner

• Which algorithm to use to generate meta learner?

• In principle, any learning scheme can be applied

• For level-1 classifier Ting & Witten (1999) recommend multiple response
linear regression (MRLE, note this is a regressor)

• a classification problem with C classes is transformed into C linear
regression problems, where response for problem i is 1 if the class equals
i, otherwise it is 0

• to classify a new instance employ all C linear models, the prediction with
highest value is selected as the output

Mixture of Experts (MoE)

• Ensemble technique, useful in very large problems

51

MoE in transformers

52

MARS - Multivariate Adaptive Regression Splines

• Generalization of stepwise linear regression

• Modification of trees to improve regression performance

• Able to capture additive structure

• Not tree-based

MARS base models

• Additive model with adaptive set of basis vectors

• Basis built up from simple piecewise linear functions

• Set “C” represents candidate set of linear splines, with “knees” at each data point Xi.

• Models are built with elements from C or their products.

• Basis collections C: |C| = 2 * N * p

()+− tx()+− xt

t

𝐶 = 𝑋𝑗 − 𝑡
+
, 𝑡 − 𝑋𝑗 + 𝑡∈ 𝑥1𝑗,𝑥2𝑗,…𝑥𝑁𝑗 𝑗=1,2,…,𝑝

MARS procedure

Model has the form:

1. Given a choice for the ℎ𝑚, the coefficients 𝛽 are chosen by the
standard linear regression.

2. Start with ℎ0 𝑋 = 1
All functions in C are candidate functions.

3. At each stage, consider as a new basis function pair all products of
a function ℎ𝑚 in the model set M, with one of the reflected pairs in
C.

4. We add to the model terms of the form:

𝛽𝑀+1ℎ𝑙 𝑋 ⋅ 𝑋𝑗 − 𝑡
+
+ 𝛽𝑀+2ℎ𝑙 𝑋 ⋅ 𝑡 − 𝑋𝑗 +

, ℎ𝑙 ∈ 𝑀

ℎ𝑚 𝑋 ⋅ 𝑡 − 𝑋𝑗 +
ℎ𝑚 𝑋 ⋅ 𝑋𝑗 − 𝑡

+

𝑓 𝑋 = 𝛽0 + ෍

𝑚=1

𝑀

𝛽𝑚ℎ𝑚 𝑋

MARS, step 1

• On each step, add the term, which reduces residual error most, into M

• Repeat steps (until, e.g., |M| >= threshold)

56

M (old) C M (new)

MARS, choosing number of terms

• Large models can overfit.

• Backward deletion procedure: delete terms which cause the smallest
increase in residual squared error, to get a sequence of models.

• Pick Model using Generalized Cross Validation:

• 𝑀 𝜆 is the effective number of parameters in the model.
C=3, r is the number of basis vectors, and K knots

• Choose the model which minimizes 𝐺𝐶𝑉(𝜆)

𝐺𝐶𝑉 𝜆 =
σ𝑖=1
𝑁 𝑦𝑖 − መ𝑓 𝑥𝑖

2

1 − Τ𝑀 𝜆 𝑁 2

𝑀 𝜆 = 𝑟 + 𝑐𝐾

MARS summary

• Basis functions operate locally

• Forward modeling is hierarchical, multiway products are built up
only from existing terms

• Each input appears only once in each product

• Useful option is to set limit on order of operations. Limit of two
allows only pairwise products. Limit of one results in an additive
model

