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Overview of topics

• Visualization and knowledge discovery.

• General methodology for explaining predictive models.

• Model level and instance level explanations, methods EXPLAIN and 
IME.
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Visualization

• 1st rule of data mining: know your data.

• Therefore: visualizations, getting background data.

• Visualize: distributions of individual variables, their relations, etc.

• For high dimensional data sets one can use scaling, e.g. UMAP or t-SNE

• Clustering is useful in supervised tasks to get insight into the relation 
between predicted values Y and basic groups in the data. If unrelated,
feature set might need amendments.

3



Visualizations
• Human visual perception has certain limitations:

• we see what we want to see

• we see what we see often

• it is more difficult to notice unexpected patterns

• practice in detection of unknown

• use visualizations which expose “the unknown”
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Human pattern recognition
• We see inexistent patterns because we WANT to see them (we feel 

lost without them).
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Facts about simple visualizations

• Pie charts are a bad choice: hard to read, similar colors, slope, legend 
is too far away

• Bar chart is much better
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The best pie chart



Pie charts jokes

• notoriously bad
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The best pie chart



Facts about simple visualizations
• Bar charts, box plots can be OK

• 3D graphs are almost never OK for 2D info: spider plot, bowl of noodles

• Take care to be clear and do not manipulate

• A more detailed examples and recommendations
https://github.com/cxli233/FriendsDontLetFriends
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Understanding
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Walid Saba, "Machine Learning 
Won't Solve Natural Language 
Understanding", The Gradient, 
2021.



Understanding ML models is difficult
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Predictive modeling scenario
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Explanation of predictions

• a  number of successful prediction algorithms 
exist (SVM, boosting, random forests, 
neural networks), but to a user they are
a black box

• many fields where users are very much concerned with the
transparency of the models: medicine, law, consultancy, 
public services, etc.

• Some explanation methods are applicable to arbitrary 
predictors
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Model comprehensibility

• decision support: model comprehensibility is important to gain users‘ 
trust

• knowledge aquisition

• some models are inherently interpretable and comprehensible

• decision and regression trees, classification and regression rules, linear
and logistic regression

• really?
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Domain level explanation

• trying to explain the
“true causes and effects”
• physical processes

• stock exchange events

• usually unreachable except for artificial problems with known relations
and generator function

• some aspects are covered with attribute evaluation, detection of 
redundancies, ...

• targeted indirectly through the models
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Model-based explanations

• make transparent the prediction process of a particular model

• the correctness of the explanation is independent of the 
correctness of the prediction but

• better models (with higher prediction accuracy) enable in 
principle better explanation at the domain level

• explanation methods are interested only in the explanation at 
the model level and leave to the developer of the model the 
responsibility for its prediction accuracy
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Two flavours of explanation techniques

• model specific
• especially used for

deep neural networks

Melis, D.A. and Jaakkola, T., 2018. Towards robust interpretability with self-explaining neural networks. In Advances in 
Neural Information Processing Systems (pp. 7786-7795).

• model agnostic
• can be used for any predictor, 

• based on perturbation of the inputs
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Idea of perturbtion-based explanations

• importance of a feature or a group of features in a specific model can 
be estimated by simulating lack of knowledge about the values of the 
feature(s)
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Instance-level explanation

• explain predictions for each instance 
separately 
• this is what practitioners applying models are 

interested in

• presentation format: impact of each feature 
on the prediction value

• model-based
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Model-level explanation
• the overall picture of a problem the model 

conveys
• this is what knowledge extractors are 

interested in

• presentation format: overall importance of 
each feature, 
but also rules, trees

• model-based
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The method EXPLAIN

• “hide” one attribute at a time

• estimate contribution of attribute from

Robnik-Sikonja, M., & Kononenko, I. (2008). Explaining classifications for individual instances. 
IEEE Transactions on Knowledge and Data Engineering,, 20(5), 589-600.
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Explaining EXPLAIN

• assume an instance (x, y), components of x are values of attributes Ai

• for a new instance x, we want to know what role each attribute’s value play
in the prediction model f, i.e. to what extend it contributed to the
classification f(x)

• for that purpose
• we compute f(x \ Ai), the model's prediction for x without the knowledge 

of the event Ai = ak (marginal prediction)
• we comparing f(x) and f(x \ Ai) to assess importance of Ai = ak

• the larger the the difference the more important the role of Ai=ak in the 
model

• f(x) and f(x \ Ai) are source of explanations
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Evaluation of prediction differences

• how to evaluate f(x) - f(x \ Ai) 

• in classification, we take f(x) in the form of probability

1.difference of probabilities

probDiffi(y|x)  = p(y|x)  - p(y|x\ Ai)

2.information gain (Shannon, 1948)

infGaini(y|x)  = log2 p(y|x)  - log2 p(y|x\ Ai)

3. weight of evidence also log odds ratio (Good, 1950)

odds(z) = p(z) / (1 – p(z))

WEi(y|x)  = log2 odds(y|x)  - log2 odds(y|x\ Ai)

22



Implementation

• p(y|x): classify x with the model

• p(y|x\ Ai) – simmulate lack of knowledge of Ai in the model
• replace with special NA value: good for some, mostly bad, left to the mercy of 

model’s internal mechanism

• average prediction across perturbations of Ai

p(y|x\ Ai) =  a p(Ai=as) p(y|x Ai = as) 

• use discretization for numeric attributes

• use Laplace correction for probability estimation

• we could build a separate model for each p(y|x\ Ai)
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Weaknes of EXPLAIN

• “hide” one attribute at a time

• estimate contribution of attribute from

• weakness: if there are redundant ways to express concept, credit is not 
assigned

• example: 

C = A1 v A2A3

explanation for instance (A1=A2=A3=1)
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The method IME

• (Interactions-based Method for Explanation)

• “hide” any subset of attributes at a time (2a subsets!)

• the source of explanations is the difference in prediction using a subset of 
features Q and an empty set of features {}

• the feature gets some credit for standalone contributions and for contributions 
in interactions
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IME: sum over all subsets

• the contributions are 

26
Štrumbelj, E., Kononenko, I. & Robnik-Šikonja, M., Explaining instance classifications with interactions of subsets of feature values. 
Data & Knowledge Engineering, Oct. 2009, 68(10):886-904



Game theory analogy

• coalitional game of a players (attributes)

• players form coalitions (i.e. interactions)

• how to distribute the payout to the members of a coalition? (how to 
assign the credit for prediction)

• The Shapley value is the unique payoff vector that is
• efficient (exactly splits payoff value), 

• symmetric (equal payments to equivalent players)

• additive (overall credit is a sum of participating in coalitions), and

• assigns zero payoffs to dummy players (no contribution to any coalition).
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Shapley value

• Shapley value can be efficiently approximated
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Solution for IME: sampling

• Shapley value can expressed in an alternative formulation

• 𝜋 𝑎 is the set of all ordered permutations of a

• Prei(O) is the set of players which are predecessors of player i in the 
order O ∈ 𝜋 𝑎

• smart sampling over subsets of attributes

• computationally feasible approach
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Štrumbelj, E., & Kononenko, I. (2010). An efficient explanation of individual classifications using game theory. 
Journal of Machine Learning Research, 11, 1-18



IME algorithm

• by measuring the variance of contributions, we can determine the 
necessary number of samples for each attribute
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Visualization of explanations

• instance-level explanation on Titanic data set

31Robnik-Šikonja, M. (2015), ExplainPrediction: Explanation of Predictions for Classification and Regression. 
R package version 1.3.0. http://cran.r-project.org/package=ExplainPrediction

http://cran.r-project.org/package=ExplainPrediction


Visualization of explanations

• model-level explanation on Titanic data set
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LIME explanation method

• Local Interpretable Model-agnostic Explanations)

• perturbations in the locality of an explained instance
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Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: Explaining the predictions of any classifier. In Proceedings of 
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144.



LIME explanation method

• optimize a trade-off between local fidelity of explanation and its 
interpretability

• L is a local fidelity function, f is a model to be explained, g is an 
interpretable local model g (i.e. linear model), 𝜋 𝑥, 𝑧 is proximity 
measure between the explained instance x and perturbed points z in its 
neighborhood, Ω is a model complexity measure
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LIME details

• LIME samples around the explanation instance x to draw samples z 
weighted by the distance 𝜋 x, z

• samples z are used to training an interpretable model g (linear model)

• the squared loss measures local infidelity

• number of non-zero weights is complexity 

• samples are weighted according to the Gaussian distribution of the 
distance between x and z
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LIME strengths and weaknesses

• faster than IME 

• works for many features, including text and images

• no guarantees that the explanations are faithful and stable

• neighborhood based: a curse of dimensionality 

• may not detect interactions due to (too) simple interpretable local 
model (linear model)
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SHAP

• SHapley Additive exPlanation

• unification of several explanation 
methods, including IME and LIME

• KernelSHAP: based on Shapley values which are estimated using a 
LIME style linear regression

• faster then IME but

• still uses linear model with all its strengths and weaknesses
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Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. 
In Advances in Neural Information Processing Systems (pp. 4765-4774).



Use case: breast cancer recurrence

Robnik-Šikonja, M., Kononenko, I., & Štrumbelj, E. (2012). Quality of classification explanations with PRBF. Neurocomputing, 96, 37-46.
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Cancer recurrence within 10 years
menop binary feature indicating menopausal status
stage tumor stage 1: less than 20mm, 2: between 20mm and 50mm, 3: over 50mm
grade tumor grade 1: good, 2: medium, 3: poor, 4: not applicable, 9: not determined
histType histological type of the tumor 1: ductal, 2: lobular, 3: other
PgR level of progesterone receptors in tumor (in fmol per mg of protein) 0: 

less than 10, 1: more than 10, 9: unknown
invasive invasiveness of the tumor 0: no, 1: invades the skin, 2: the mamilla, 

3: skin and mamilla, 4: wall or muscle
nLymph number of involved lymph nodes 0: 0, 1: between 1 and 3, 2: between 4 and 9, 

3: 10 or more
famHist medical history 0: no cancer, 1: 1st generation breast, ovarian or prostate cancer

2: 2nd generation breast, ovarian or prostate cancer, 
3: unknown gynecological cancer 4: colon or pancreas cancer, 
5: other or unknown cancers, 9: not determined

LVI binary feature indicating lymphatic or vascular invasion
ER level of estrogen receptors in tumor (in fmol per mg of protein) 1: less than 5, 

2: 5 to 10, 3: 10 to 30, 4: more than 30, 9: not determined
maxNode diameter of the largest removed lymph node 1: less than 15mm, 

2: between 15 and 20mm, 3: more than 20mm
posRatio ratio between involved and total lymph nodes removed 1: 0, 2: less that 10%, 

3: between 10% and 30%, 4: over 30%
age patient age group 1: under 40, 2: 40-50, 3: 50-60, 4: 60-70, 5: over 70 years



Use case: breast cancer recurrence
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Use case: breast cancer recurrence
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Use case: B2B sales forecasting

• Goals: improve understanding of factors influencing the outcome and improve 
the sales performance 
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Bohanec, M., Borštnar, M. K., & Robnik-Šikonja, M. (2017). Explaining machine learning models in sales predictions. 
Expert Systems with Applications, 71, 416-428.



B2B sales attributes
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B2B sales: drill in
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B2B sales: EXPLAIN and IME
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B2B sales: learning from errors
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B2B: what if
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B2B: change of distribution
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Lessons learned

• an effort needed to overcome the users’ resistance

• human-in-the-loop is necessary to train, discuss, clean data, introduce
explanations

• with an increased use, users gain trust in the methodology

• human mental models tend to be biased

• joint interactive approach beats both humans and ML models

• problem with slippages
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Attacks on explanations
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• Poor sampling in explanation 
approaches makes them 
vulnerable

• Example: PCA based 
visualization of a part of the 
COMPAS dataset; the red dots 
were generated by LIME



Dieselgate attacks on explanations
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• Defence: better sampling

Domen Vreš and Marko Robnik-Šikonja, 2021. Better sampling in explanation methods can prevent dieselgate-like deception. arXiv preprint arXiv:2101.11702.



Opportunities

• better and more focused sampling

• better local explanation models

• interactions: detect and describe

• sequences: the order of attributes is important!

• images: decison areas, super-pixels

• better visualizations: human cognitive limitations

• explanations is also domain specific, we need explanation 
datasets
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Conclusions

• many successful approaches but

• lots of opportunities for improvements

• human explanations are not necessary comprehensible

• humans often explain by providing background or additional knowledge

• legal and practical need for explanations of ML models
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