Automated Machine Learning (AutoML)

Prof Dr Marko Robnik-Šikonja Intelligent Systems, Edition 2025

Why AutoML?

- Growing demand for ML expertise
- Manual ML pipelines are time-consuming
- Evolution: Manual ML → Automated ML
- End-to-end automation of ML pipeline
- AutoML democratizes Al
- Use cases in competitions, industry, etc.
- Not a magic

Traditional ML Pipeline

- Steps: data→preprocessing→model→evaluation→deployment
- AutoML automates most parts
- Instead of manually choosing:
 - features
 - models
 - hyperparameters
 - training strategies

AutoML systems automatically search, optimize, and adapt.

Automated Preprocessing

- Missing data handling
- Scaling
- Feature construction

Feature engineering automation

- Automatically generate, transform, or select features
- Automate:
 - normalization & scaling
 - categorical encoding
 - feature crosses
 - polynomial features
 - feature selection
- Approaches
 - rule-based pipelines
 - evolutionary algorithms
 - attention-based feature learning
 - embedded methods (e.g., L1 regularization)
- Example: create log(income), income/age, select top-k features

Model selection

- Automatically choose which algorithm to use.
- Search space includes: linear models, tree-based models, kernel methods, neural networks, etc.
- Techniques
 - Bayesian optimization over models
 - ensemble selection
 - meta-learning (use prior tasks to guide choice)
- Example: Should I use Random Forest, XGBoost, or a Neural Network?

Meta-Learning (learning to learn)

- Use experience from previous datasets to speed up AutoML.
- Store dataset "meta-features" (size, skewness, entropy, etc.)
- Learn which models worked best before
- warm-start optimization
- Example: if the dataset looks like past credit-risk data → try XGBoost first
- This reduces search time drastically.

Neural architecture search (NAS)

- Automatically design neural network architectures.
- Search space:
 - number of layers
 - width
 - skip connections
 - attention vs convolution
- Search strategies
 - reinforcement learning
 - evolutionary algorithms
 - gradient-based NAS (e.g., DARTS)
- Example: find the best CNN or Transformer architecture.

Hyperparameter optimization

- Automatically finds good hyperparameters for a fixed model
- This is the most common and mature AutoML technique.
- Typical parameters: learning rate, number of layers, tree depth, regularization strength, etc
- Methods
 - Grid search (simple, inefficient)
 - Random search (surprisingly strong baseline)
 - Bayesian optimization (Gaussian Processes, TPE)
- Example: Find best (learning_rate, max_depth) for XGBoost

Random search

- Random search optimizes hyperparameters by sampling configurations randomly,
- This is more efficient than grid search in high-dimensional spaces because it focuses effort on important parameters naturally.
- Assuming that not all parameters are equally important, grid search only samples a few values of important parameters, while random search samples many more distinct values of important parameters with the same computational budget
- Grid search:
 - assume thet you use a grid with n values per parameter
 - Total trials = n^d
 - Each parameter gets exactly n values, regardless of importance.
- Random search
 - Let k= number of important parameters, N= total trials
 - Random search explores O(N) values per important parameter
- Grid search explores $\mathcal{O}(N^{1/k})$ values per important parameter
- For large d, this gap is enormous.

Pipeline Optimization (End-to-End AutoML)

- Optimize entire ML pipelines, not just components
- A pipeline might be: StandardScaler → PCA → XGBoost
- AutoML searches over:
 - preprocessing steps
 - feature selection
 - model choice
 - hyperparameters
- Key methods
 - Bayesian optimization
 - genetic programming
 - hierarchical search spaces
- Example systems
 - Auto-sklearn
 - TP 's AutoML
 - H2O AutoML

Bayesian optimization

- Bayesian Optimization is a strategy for optimizing expensive, unknown, and non-convex functions using as few evaluations as possible.
- It is typically used when evaluating the objective is slow or costly (e.g., training a model), gradients are unavailable, the function may be noisy, and/or the number of evaluations is limited.
- In ML, the function is often: $f(\theta) = validation\ performance\ of\ model\ with\ hyperparameters\ \theta$
- Bayesian optimization builds a surrogate probabilistic model of the objective function and uses it to decide where to evaluate next, balancing exploration and exploitation

Strengths and limitations of AutoML

- [†] Saves time and expertise
- * Strong baselines quickly
- * Reduces human bias
- * Reproducible workflows
- Computationally expensive
- Limited interpretability
- Hard to encode domain knowledge
- May overfit if not controlled
- High compute cost