
1

Joshua Evans

Bath Reinforcement Learning Laboratory

Department of Computer Science

Introduction to Reinforcement Learning
Lecture 2: Frontiers of RL

2

Learn 𝑉(𝑠) or 𝑄(𝑠, 𝑎), then derive a policy.

Dynamic
Programming

Monte Carlo
Methods

Temporal Difference
Methods

Tabular Methods

• So far, our value functions could all be represented as tables.
• For 𝑉(𝑠), one entry per state.

• For 𝑄(𝑠, 𝑎), one entry per state-action pair.

3

North

South

EastWest

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16 State Action 𝐐(𝐬, 𝐚)

1 N 𝑄(0, N)

1 S 𝑄(0, 𝑆)

1 E 𝑄(0, 𝐸)

1 W 𝑄(0, 𝑊)

… … …

16 W 𝑄(24, 𝑊)

• We need to store a value
in memory for each state-
action pair.

• We need to experience a
state-action pair to learn
about it.

• Feasible here, but what
about larger problems?

16 states × 4 actions → 64 state-action pairs

Larger State-Spaces

• Tetris
• 10 × 20 grid, 7 current tetriminos.

• Upper bound of 7 × 2200 states.

• Not feasible to learn to play
Tetris using tabular methods.
• Can’t fit the Q-table in memory.

• Cannot reasonably experience all
state-action pairs.

4

10

9

8

7

6

5

4

3

2

1

20

19

18

17

16

15

14

13

12

11

1 2 3 4 5 6 7 8 9 10

Current

Larger State-Spaces

• Mountain Car Problem
• Continuous State-Space

• Position (−1.2 < 𝑥 < 0.5)

• Velocity (−0.07 < 𝑣 < 0.07)

• Actions:
• Full Throttle Forward

• Full Throttle Backwards

• Zero Throttle

• Infinite number of states!

5

Mountain Car Problem
The underpowered car must reach the top

of the hill as quickly as possible.

Generalisation

• We can only reasonably expect to experience a small subset of the
entire state-action-space.

• Can we generalise what we know about states we have visited to
states we haven’t visited?

• Can we do this in a way which avoids storing information about every
state separately?

6

Yes, using function approximation!

Function Approximation

• Function Approximated Methods
• Represent 𝑣𝜋(𝑠) as a real-valued function with parameter vector 𝜽.

• We only store and update 𝜽.

ො𝑣 𝑠, 𝜽 ≈ 𝑣𝜋(𝑠)

• Function could be a linear function, polynomial, neural network…

• Learn a function with parameters 𝜽 which maps states to values.
• How can we go about doing this?

7

Approximating Value Functions

State-Values
𝑠 ⟼ 𝑣

• Dynamic Programming

𝑠 ⟼ 𝐸𝜋 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝜽𝒕 𝑆𝑡 = 𝑠

• Monte-Carlo

𝑠 ⟼ 𝐺𝑡

• Temporal-Difference

𝑠 ⟼ 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝜽𝒕

Action-Values
𝑠, 𝑎 ⟼ 𝑞

• Dynamic Programming

𝑠, 𝑎 ⟼ 𝐸𝜋 … 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• Monte-Carlo

𝑠, 𝑎 ⟼ 𝐺𝑡

• Temporal-Difference

𝑠, 𝑎 ⟼ 𝑅𝑡+1 + 𝛾 ො𝑞 𝑆𝑡+1, 𝐴𝑡+1, 𝜽𝒕

We can use these as training examples in
a supervised learning context!

8

Approximating Value Functions

• Our goal is to train a function to correctly map inputs to outputs.
• We do this all the time in supervised learning!

9

𝑓 , 𝜽 = 0 𝑓 , 𝜽 = 1

Change 𝜽 so that 𝑓 maps images to classes correctly.
Class 0: Cat
Class 1: Dog
Image Credit: Wikimedia Commons

Approximating Value Functions

• Our goal is to train a function to correctly map inputs to outputs.
• We do this all the time in supervised learning!

• Here, our inputs are states, and our outputs are values.

10

ො𝑣 , 𝜽 = 𝐺1

Change 𝜽 so that ො𝑣 maps states to values correctly.

ො𝑣 , 𝜽 = 𝐺2

State Input

Value Estimate (e.g. Monte
Carlo sample return)

Approximating Value Functions

• We can measure how well our function is mapping inputs to outputs
using objective functions.

MSE =
1

𝑚

𝑖=1

𝑚

𝑦𝑖 − ො𝑦𝑖
2

11

𝑓 , 𝜽 = 0 𝑓 , 𝜽 = 1 𝑓 , 𝜽 = 1

Class 0: Cat
Class 1: Dog
Image Credit: Wikimedia Commons

Approximating Value Functions

• We can measure how well our function is mapping inputs to outputs
using objective functions.

MSE =
1

𝑚

𝑖=1

𝑚

𝑦𝑖 − ො𝑦𝑖
2

MSE =
1

𝑚

𝑖=1

𝑚

𝑣𝜋(𝑆𝑡) − ො𝑣(𝑆𝑡 , 𝜽𝑡
2

12

True
Output

Predicted
Output

Existing Value
Estimate

New Value
Estimate

Approximating Value Functions

• We can measure how well our function is mapping inputs to outputs
using objective functions.

MSE =
1

𝑚

𝑖=1

𝑚

𝑦𝑖 − ො𝑦𝑖
2

MSE =
1

𝑚

𝑖=1

𝑚

𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝜽𝑡) − ො𝑣 𝑆𝑡 , 𝜽𝑡
2

13

True
Output

Predicted
Output

Existing Value
Estimate

TD Target

Approximating Value Functions

• How do we know how to change
𝜽 in order to lower our loss?

• Calculate the gradient of our loss
function with respect to each of
the parameters in 𝜽.

• Take a step in the direction
which lowers the loss.

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃𝑡
MSE

14

Loss

Image Credit: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Gradient_descent.gif

Function Approximation

• Function Approximated Methods
• Represent 𝑣𝜋(𝑠) as a real-valued function with parameter vector 𝜽.

• We only store and update 𝜽.

ො𝑣 𝑠, 𝜽 ≈ 𝑣𝜋(𝑠)

• Function could be a linear function, polynomial, neural network…

• Learn a function with parameters 𝜽 which maps states to values.
• How can we go about doing this?

15

Deep RL

A Brief History of Deep RL

• 1992 – Gerald Tesauro’s TD-Gammon

16
Image Credit: IBM

Tesauro, G., 1995. Temporal difference learning and TD-Gammon. Communications of the ACM, 38(3), pp.58-68. [URL]

https://researcher.watson.ibm.com/researcher/view_page.php?id=6853
https://www.csd.uwo.ca/~xling/cs346a/extra/tdgammon.pdf

A Brief History of Deep RL

• 2009 – Riedmiller et al. Robocup

17
Image Credit: https://www.robocup.org/

Hafner, R. and Riedmiller, M., 2007, April. Neural reinforcement learning controllers for a real robot application. In Proceedings 2007 IEEE International Conference on
Robotics and Automation (pp. 2098-2103). IEEE. [URL]

https://www.robocup.org/
https://ieeexplore.ieee.org/abstract/document/4209395/

A Brief History of Deep RL

• 2009 – Riedmiller et al. Robocup

18
Image Credit: https://www.robocup.org/

Hafner, R. and Riedmiller, M., 2007, April. Neural reinforcement learning controllers for a real robot application. In Proceedings 2007 IEEE International Conference on
Robotics and Automation (pp. 2098-2103). IEEE. [URL]

https://www.robocup.org/
https://ieeexplore.ieee.org/abstract/document/4209395/

A Brief History of Deep RL

• 2013-2015 – DeepMind train agents to play Atari games.

19
Image Credit: Nature & DeepMind

Mnih et al., 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602. [URL]
Mnih et al., 2015. Human-level control through deep reinforcement learning. nature, 518(7540), pp.529-533. [URL]

https://deepmind.com/blog/article/deep-reinforcement-learning
https://arxiv.org/abs/1312.5602
https://www.nature.com/articles/nature14236

A Brief History of Deep RL

• 2016 – DeepMind train agents to beat world champions at Go.

20
Image Credit: Nature & DeepMind

Silver et al., 2016. Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), pp.484-489. [URL]

https://www.nature.com/articles/nature16961
https://deepmind.com/blog/article/deep-reinforcement-learning
https://www.nature.com/articles/nature16961

More Recent Results

• 2017-2019 – OpenAI Five (DotA 2 Agents)

21
Image Credit: OpenAI OpenAI Five Benchmark Match Replay

Berner et al., 2019. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680. [URL]

https://openai.com/blog/openai-five-defeats-dota-2-world-champions/
https://www.twitch.tv/videos/293517383
https://arxiv.org/abs/1912.06680

More Recent Results

• 2019 – DeepMind’s AlphaStar (StarCraft II Agent)

22
Image Credit: DeepMind

Vinyals et al., 2019. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782), pp.350-354. [URL]

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://www.nature.com/articles/s41586-019-1724-z

Cutting-Edge Results

AlphaTensor (2022)
Discovery of novel, efficient, and
provably-correct algorithms.

Image Credit: DeepMind and ML4AD@NeurIPS

Autonomous Driving (Present)
Using deep reinforcement learning
to help guide autonomous vehicles.

https://deepmind.google/discover/blog/discovering-novel-algorithms-with-alphatensor/
https://ml4ad.github.io/

The Obligatory “RLHF” Slide

Image Credit: OpenAI

Reinforcement Learning from Human Feedback (Present)
Use human preferences to train a reward model. Then, use that reward
model to fine-tune a GPT model with reinforcement learning methods.

https://openai.com/blog/chatgpt

Deep Q-Networks (DQN)

25

Input
Layer

Hidden
Layers

Output
Layer

…

“LEFT”

ො𝑞(𝑠, 𝑎, 𝜽)

What should our neural
network look like?

• We could have state-action
pairs as input, and a single
actin-value as output.

Deep Q-Networks (DQN)

What should our neural
network look like?

• We could have state-action
pairs as input, and a single
action-value as output.

• We could have only the state
as input, then one output per
available action as outputs.

26

Input
Layer

Hidden
Layers

Output
Layer

…

ො𝑞(𝑠, 𝑎1)

ො𝑞(𝑠, 𝑎2)

ො𝑞(𝑠, 𝑎𝑛)

…

Deep Q-Networks (DQN)

27
Image Credit: Minh et al. 2015

https://www.nature.com/articles/nature14236

28

Better Than Human
Performance

Worse Than Human
Performance

Game

%
 R

el
at

iv
e

to
 H

u
m

an
 P

er
fo

rm
an

ce

Image Credit: Minh et al. 2015

https://www.nature.com/articles/nature14236

29

Algorithm: Ridiculously Naïve Deep Q-Learning

Initialise action-value network ො𝑞 with arbitrary weights 𝜽

For episode = 1, 𝑀 do

 Initialise initial state 𝑆1

 For 𝑡 = 1, 𝑇 do

 With probability 𝜖 select random action 𝐴𝑡

 With probability 1 − 𝜖 select action 𝐴𝑡 = argmax𝑎 ො𝑞(𝑆𝑡, 𝑎, 𝜽)
 Execute action 𝐴𝑡, observe reward 𝑅𝑡 and next state 𝑆𝑡+1

 Set 𝑦𝑡 = ቊ
𝑅𝑡 , if 𝑆𝑡+1 is terminal

𝑅𝑡 + 𝛾max
𝑎′

ො𝑞(𝑆𝑡+1, 𝐴′, 𝜽) , otherwise

 Perform gradient descent step ∇𝜽 𝑦𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝜽
2

 End For

End For

This pseudocode is for illustration purposes only.
Never implement this – it will perform terribly.

Forward Pass

Calculate Loss
Calculate Gradients
Backward Pass

𝑦 ො𝑦

Compute TD Target

Ridiculously Naïve DQN Issues

• Data Highly Temporally Correlated
• Samples are taken sequentially – distributional shift over time.

• The agent’s policy could change rapidly.
• Large errors will lead to large gradients and large updates.

• Even small changes in Q-values may drastically change the policy.

• This may cause sudden changes to the sampling distribution.

• We’re using the same function to compute both our prediction (ො𝑦)
and our target (𝑦).
• Whenever we perform an update, our target will change.

• We’re chasing a moving target – can lead to unstable training.

30

DQN Fixes: Experience Replay

• Use experience replay.
• Store a buffer 𝐷 of experiences of the form (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1).

• Perform updates using a minibatch of experiences from the buffer.

• Decorrelates experiences temporally.
• Recent experiences are not emphasised during training.

• Old experiences are not forgotten.

• Requires a large amount of memory.
• In excess of 1,000,000 recent experiences may need to be stored.

• Extensions exist to prioritise experiences and remove old ones.

31

DQN Fixes: Reward Clipping/Normalising

• Reward magnitude not known ahead of time.

• Rewards with large magnitudes may cause dramatic weight updates,
impacting stability.

• To deal with this, we could clip rewards to lie in the range [−1,1].

• We can also clip the gradients of the loss function each before
performing an update.

• We could also track the rewards we observe and normalise them as
we go along.

32

DQN Fixes: Fixed Target Network

• We currently use the same network ො𝑞(𝑠, 𝑎, 𝜽) to select actions and
compute our target value.
• As we update our network, the target value will also change.

• The network is updating towards a moving target!

• This can cause instability when training, and decrease overall performance.

• To fix this, we can use a fixed target network.
• Select actions using ො𝑞1(𝑠, 𝑎, 𝜽) with parameters 𝜽1.

• Calculate target values using ො𝑞2(𝑠, 𝑎, 𝜽2)with parameters 𝜽2.

• Every 𝐶 steps, update 𝜽2 = 𝜽1.

• Allows us to perform update towards a (mostly) stationary target.

33

34

Algorithm: Deep Q-Learning with Experience Replay and Fixed Target Network

Initialise replay memory 𝐷 to capacity 𝑁
Initialise action-value network ො𝑞1 with arbitrary weights 𝜽1

Initialise target action-value network ො𝑞2 with weights 𝜽2 = 𝜽1

For episode = 1, 𝑀 do

 Initialise initial state 𝑆1

 For 𝑡 = 1, 𝑇 do

 With probability 𝜖 select random action 𝐴𝑡

 With probability 1 − 𝜖 select action 𝐴𝑡 = argmax𝑎 ො𝑞1(𝑆𝑡, 𝑎, 𝜽1)
 Execute action 𝐴𝑡, observe reward 𝑅𝑡+1 and next state 𝑆𝑡+1

 Store transition (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1) in 𝐷
 Sample random minibatch of transitions (𝑆𝑗 , 𝐴𝑗 , 𝑅𝑗+1, 𝑆𝑗+1) from 𝐷

 Set 𝑦𝑗 = ൝
𝑅𝑗+1 + 0, if 𝑆𝑗+1 is terminal

𝑅𝑗+1 + 𝛾max
𝑎′

ො𝑞2(𝑆𝑗+1, 𝑎′, 𝜽2) , otherwise

 Perform gradient descent step ∇𝜽 𝑦𝑗 − ො𝑞 𝑆𝑗 , 𝐴𝑗 , 𝜽
2

 Every 𝐶 steps, update 𝜽2 = 𝜽1

 End For

End For
N.B. For simplicity, this pseudocode does not use Reward Clipping/Gradient Clipping/Reward Normalisation.

Initialise Replay Buffer

Store Experience in Replay Buffer

Update based on experience
sampled from replay buffer.

Initialise Target Network

Select action using ො𝑞1.

Compute TD
target using ො𝑞2

(target network).

Periodically update target network.

Types of Reinforcement Learning Methods

• Value-Based RL Methods
• Approximate the optimal action-value function 𝑄∗(𝑠, 𝑎).

• Policy-Based RL Methods
• Directly search the policy-space for the optimal policy 𝜋∗(𝑎|𝑠).

N.B. these are not mutually exclusive!

Deep RL methods use deep neural networks to
represent the value function or policy.

35

or policy.

Why Policy-Based Methods?

• So far, we have worked with value-based methods.
• We’d learn the action-value function, then derive a policy (e.g. 𝜖-greedy).

• What if the optimal policy is stochastic?
• Value-based methods have no natural way of dealing with this.

• Instead, could we learn the optimal policy directly?

36

Aliased Gridworld

37

State = (Wall to North, Wall to South, Wall to East, Wall to West)

Example Credit: David Silver

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

38

State = (Wall to North, Wall to South, Wall to East, Wall to West)
(TRUE, TRUE, FALSE, FALSE)

(TRUE, FALSE, FALSE, TRUE)

(TRUE, FALSE, FALSE, FALSE)

Example Credit: David Silver

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

39

State = (Wall to North, Wall to South, Wall to East, Wall to West)

These two states have identical representations!

(TRUE, TRUE, FALSE, FALSE)(TRUE, TRUE, FALSE, FALSE)

Example Credit: David Silver

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

40

State = (Wall to North, Wall to South, Wall to East, Wall to West)

→ ← ↓ ← ←

These two states have identical representations!
A deterministic policy would get stuck.

Example Credit: David Silver

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Aliased Gridworld

41
Example Credit: David Silver

State = (Wall to North, Wall to South, Wall to East, Wall to West)

These two states have identical representations!
A stochastic policy would work much better!

→ ↓ ←

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/pg.pdf

Q-Network

42

Input
Layer

Hidden
Layers

Output
Layer

…

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎2)

𝑄(𝑠, 𝑎𝑛)

…

Policy Network

43

Input
Layer

Hidden
Layers

Output
Layer

…

ℎ(𝑎1|𝑠)

ℎ(𝑎2|𝑠)

ℎ(𝑎𝑛|𝑠)

…

SoftMax

𝜋

Policy Gradient Methods

𝜋𝜽 𝑎 𝑠 = Probability of choosing action 𝑎 given state 𝒔 and policy
parameters 𝜽.

• 𝐽(𝜋𝜽) is some objective function for our policy, which we aim to
maximise (e.g. expected return, E𝜋𝜃

𝐺𝑡).

• Policy gradient update rule: 𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇𝜽𝒕
𝐽 𝜋𝜽𝑡

• ∇𝜽𝐽 𝜋𝜽 is called the policy gradient.

44

Policy Gradient Methods

• Policy gradient update: 𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇𝜽𝒕
𝐽 𝜋𝜽𝑡

• Where our objective function, 𝐽 𝜋𝜽𝑡
, is the discounted return, E𝜋𝜃

𝐺𝑡 .

• Problem: We don’t have direct access to, the gradient of the
discounted return w.r.t. our policy parameters!

• So, to actually use this update rule in an algorithm, we need an
expression for the policy gradient which we can numerically compute.
• This expression should be computable using only 𝜋, ∇𝜽𝜋, 𝜽𝒕, 𝐽…

• …and a trajectory 𝜏 of our agent’s experience.

45

46

We can approximate this using the sample mean over many trajectories 𝜏 ∈ 𝐷:

∇𝜃𝐽 𝜋𝜃 ≈
1

𝐷

𝜏∈𝐷

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝐺𝑡

For full derivation, see the fantastic OpenAI Spinning Up tutorial!

∇𝜃𝐽 𝜋𝜃 = ∇𝜃𝐸𝜏∼𝜋𝜃
𝐺𝑡

= ∇𝜃 න
𝜏

𝑃 𝜏 𝜃 𝐺𝑡

= න
𝜏

∇𝜃𝑃 𝜏 𝜃 𝐺𝑡

= න
𝜏

𝑃 𝜏 𝜃 ∇𝜃 log 𝑃 𝜏 𝜃 𝐺𝑡

= 𝐸𝜏∼𝜋 ∇𝜃 log 𝑃(𝜏 ∣ 𝜃) 𝐺𝑡

= 𝐸𝜏∼𝜋

𝑡=0

𝑇

∇𝜃 log 𝜋 𝐴𝑡 ∣ 𝑆𝑡 𝐺𝑡

Expand expectation.

Bring gradient under integral.

Log-derivative trick.

Return to expectation form.

Substitute expression for
grad-log-prob.

High-level, hand-wavy intuition:
• Push up the preferences of actions

that lead to high returns.
• Push down the preferences of

actions that lead to low returns.

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

47

Algorithm: REINFORCE

Initialise parameters: step size 𝛼 ∈ (0,1]
Initialise policy network 𝜋 with parameters 𝜽

For episode = 1, 𝑀 do

 Generate an episode trajectory 𝜏~𝜋𝜽

 For 𝑡 = 1, 𝑇 − 1 do

 𝐺 ← σ𝑘=𝑡+1
𝑇 𝑅𝑘

 𝜽 ← 𝜽 + 𝛼 ∇𝜽log 𝜋𝜽(𝐴𝑡|𝑆𝑡) 𝐺
 End For

End For

In this example, we’re using 𝛾 = 1 (i.e., no discounting).

Our Policy-Gradient!

Sample Return

Actor-Critic Methods

• With REINFORCE, we are stuck with performing Monte Carlo updates.

• If we learn a policy function and a value function, we can use the
value function to do bootstrapping, letting us perform TD updates.

• This gives us all the previous benefits that we’ve seen from
bootstrapping, and the benefits of policy-based methods.

• We call bootstrapping methods that learn the policy function directly
while using estimates from value functions Actor-Critic Methods.
• The policy function is the “Actor”.

• The value function is the “Critic”.

48

Actor-Critic
methods
do both!

49

Types of Reinforcement Learning Methods

• Value-Based RL
• Approximates the optimal action-value function 𝑄∗(𝑠, 𝑎).

• Policy-Based RL
• Directly search the policy-space for the optimal policy 𝜋∗(𝑎|𝑠).

N.B. these are not mutually exclusive! (See, I told you!)

Deep RL uses deep neural networks to
represent the value function or policy

Deep Deterministic Policy Gradients

• DDPG is an actor-critic algorithm for continuous action-spaces.

• It makes use of many of DQN’s tricks, such as replay buffers and
target networks.

• It is off-policy, so can make use of old experiences.

• It makes policy-gradient updates maximising Ε 𝑄 𝑠, 𝑎 .

50

Recall: We maximised Ε 𝐺𝑡 earlier!

Silver, D. et al., 2014, January. Deterministic policy gradient algorithms. In International conference on machine learning (pp. 387-395). PMLR. [URL]
Lillicrap, T.P. et al. 2015. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971. [URL]

http://proceedings.mlr.press/v32/silver14.html
https://arxiv.org/abs/1509.02971

DDPG Network Architecture

51

Critic Network (Q-Network)

Input
Layer

Hidden
Layers

Output
Layer

…

𝑎

𝑄(𝑠, 𝑎)

Input
Layer

Hidden
Layers

Output
Layer

…

𝑎

Actor Network (Policy-Network)

52

Algorithm: Deep Deterministic Policy Gradients (DDPG)

Initialise replay memory 𝐷 to capacity 𝑁
Initialise critic network 𝑄 with random weights 𝜃𝑄, actor network 𝜋 with weights 𝜃𝜋

Initialise target critic network 𝑄 with weights መ𝜃𝑄 = 𝜃𝑄, target actor network ො𝜋 with weights መ𝜃𝜋 = 𝜃𝜋

Initialise target network learning rate 𝛽 ∈ (0,1]

For episode = 1, 𝑀 do

 Initialise random process 𝒩 for action exploration

 Initialise initial state 𝑠1

 For 𝑡 = 1, 𝑇 do

 Select action 𝑎𝑡 = 𝜋 𝑠𝑡 + 𝒩𝑡

 Execute action 𝑎𝑡 and observe reward 𝑟𝑡+1, next state 𝑠𝑡+1

 Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in 𝐷
 Sample random minibatch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1) from 𝐷

 Set 𝑦𝑗 = 𝑟𝑗+1 + 𝛾 𝑄 𝑠𝑗+1, ො𝜋 𝑠𝑗+1

 Perform gradient descent step ∇𝜃𝑄 𝑦𝑗 − 𝑄 𝑠𝑗 , 𝑎𝑗

2
 on critic

 Perform gradient ascent step ∇𝜃𝜋Ε 𝑄 𝑠𝑗 , 𝜋 𝑠𝑗 on actor

 Update target networks መ𝜃𝑄 ← 𝛽𝜃𝑄 + (1 − 𝛽) መ𝜃𝑄, መ𝜃𝜋← 𝛽𝜃𝜋 + (1 − 𝛽) መ𝜃𝜋

 End For

End For

Pre-Fill Replay Buffer

Sample From Replay Buffer

Store Experience in Replay Buffer

Initialise Target Networks

Generate Target Using Target Networks

Update Target Networks

We use random noise for exploration.

Critic update very similar to DQN’s.

Actor update similar to REINFORCE’s.

Trust Region Policy Updates

• To avoid instability in training, we don’t want to change our policy too
much after any given update. How can we enforce this?

• Idea: Constrain the “distance” between our current and new policies.
• The area of the policy space we can update within is called the trust region.

53

𝜋0

𝜋1 𝜋2

𝜋3 …
How can we implement this? *

ഥ𝐷𝐾𝐿(𝜽𝑘+1| 𝜽𝑘 = 𝐸𝑠∼𝜋𝜽𝑘
𝐷𝐾𝐿 𝜋𝜃𝑘+1

⋅ 𝑠 ||𝜋𝜃𝑘
⋅ 𝑠

During the optimisation step, constrain the KL
divergence between the old and new policies across

states visited by the old policy.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P., 2015, June. Trust region policy optimization. In International conference on machine learning (pp. 1889-1897). PMLR. [URL]
Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O., 2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347. [URL]

*Other (better) ways exist, but this is a simple case that gives you the general idea behind how these types of methods work.

https://proceedings.mlr.press/v37/schulman15.html
https://arxiv.org/pdf/1707.06347.pdf

Offline RL

• We’ve seen Off-Policy RL methods (e.g., Q-Learning) use data
generated by one policy to learn about another.

• Offline RL methods take this idea to the extreme.
• The agent is given a fixed dataset of experience. This experience could be

generated by other agents, human demonstrated, etc.

• The agent has to learn a policy using only this fixed dataset – it can’t interact
with the environment to generate any more data itself.

• This brings with it many unique challenges!
• Exploring is not possible!

• Distributional shifts between dataset experience and online experience.

54

Levine, S., Kumar, A., Tucker, G. and Fu, J., 2020. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643. [URL]

https://arxiv.org/pdf/2005.01643.pdf

Inverse RL

• Regular RL:
• What policy maximises the long-term reward for a given problem?

• Inverse RL:
• What reward function is a given policy maximising?

• Useful when we have demonstrations from an agent completing a
task, but we don’t know the reward function being maximised.
• We can use Inverse RL methods to derive the reward function, then train a

reinforcement learning agent to solve the task.

55

Arora, S. and Doshi, P., 2021. A survey of inverse reinforcement learning: Challenges, methods and progress. Artificial Intelligence, 297, p.103500. [URL]

https://www.sciencedirect.com/science/article/pii/S0004370221000515

Intrinsically-Motivated RL

• Many difficult problems have very sparse rewards.

• Can we use intrinsic rewards to drive intelligent
behaviour, even in the absence of extrinsic rewards
from the environment?
• Many examples of this in nature: novelty, curiosity,

regularity, information-gain, empowerment, skill
diversity…

• A closer look at one example: Curiosity
• Define intrinsic reward based on prediction errors.

• Define intrinsic reward based on prediction improvements.

56

Schmidhuber, J., 1991. A possibility for implementing curiosity and boredom in model-building neural controllers. In Proc. of the international conference on simulation of adaptive behavior: From animals to animats (pp. 222-227). [URL]
Chentanez, N., Barto, A. and Singh, S., 2004. Intrinsically motivated reinforcement learning. Advances in neural information processing systems, 17. [URL]
Burda, Y., Edwards, H., Storkey, A. and Klimov, O., 2018, September. Exploration by random network distillation. In International Conference on Learning Representations. [URL]

Noisy TV Problem: Our agent will never
be learn to predict what’s going to be
shown next on this noisy TV screen.

𝑅𝑡 = 𝑅𝑡
𝐸 + 𝑅𝑡

𝐼

Total
Reward

Extrinsic
Reward

Intrinsic
Reward

https://mediatum.ub.tum.de/doc/814958/document.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
https://openreview.net/forum?id=H1lJJnR5Ym

Hierarchical RL

57

Sutton, R.S., Precup, D. and Singh, S., 1999. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2), pp.181-211. [URL]
Şimşek, Ö. and Barto, A., 2008. Skill characterization based on betweenness. Advances in neural information processing systems, 21. [URL]
Bacon, P.L., Harb, J. and Precup, D., 2017, February. The option-critic architecture. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1). [URL]
Evans, J. B. and Şimşek, Ö. (2023) ‘Creating Multi-Level Skill Hierarchies in Reinforcement Learning’, in Thirty-seventh Conference on Neural Information Processing Systems. [URL]

Primitive
Actions

Skill Discovery
How can an agent automatically discover useful

skills for solving a given problem?

https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://ojs.aaai.org/index.php/AAAI/article/view/10916
https://openreview.net/forum?id=gjBk6IQofa

Hierarchical RL

• How to represent skills? One approach: The Options framework.
𝑜 =< 𝐼𝑜 , 𝜋𝑜, 𝛽𝑜 >

• 𝐼𝑜 - Initiation Set: Which states can I select this skill in?

• 𝜋𝑜 - Option Policy: What action does this skill select in each state?

• 𝛽𝑜 - Termination Condition: Which states does this skill terminate in?

• How to discover skills?
• Many different approaches proposed. But still an open research question!

58

Sutton, R.S., Precup, D. and Singh, S., 1999. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2), pp.181-211. [URL]
Şimşek, Ö. and Barto, A., 2008. Skill characterization based on betweenness. Advances in neural information processing systems, 21. [URL]
Bacon, P.L., Harb, J. and Precup, D., 2017, February. The option-critic architecture. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1). [URL]
Evans, J. B. and Şimşek, Ö., 2023. Creating Multi-Level Skill Hierarchies in Reinforcement Learning. In Thirty-Seventh Conference on Neural Information Processing Systems. [URL]

https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://ojs.aaai.org/index.php/AAAI/article/view/10916
https://openreview.net/forum?id=gjBk6IQofa

Summary

59

Value-Based
Methods

Policy-Based
Methods

Actor-Critic
Methods

REINFORCEDQN DDPG

Function
Approximation

Deep RL

Trust Region Updates

Intrinsically
Motivated RL

Hierarchical RLInverse RLOffline RL

	Slide 1: Introduction to Reinforcement Learning Lecture 2: Frontiers of RL
	Slide 2
	Slide 3: Tabular Methods
	Slide 4: Larger State-Spaces
	Slide 5: Larger State-Spaces
	Slide 6: Generalisation
	Slide 7: Function Approximation
	Slide 8: Approximating Value Functions
	Slide 9: Approximating Value Functions
	Slide 10: Approximating Value Functions
	Slide 11: Approximating Value Functions
	Slide 12: Approximating Value Functions
	Slide 13: Approximating Value Functions
	Slide 14: Approximating Value Functions
	Slide 15: Function Approximation
	Slide 16: A Brief History of Deep RL
	Slide 17: A Brief History of Deep RL
	Slide 18: A Brief History of Deep RL
	Slide 19: A Brief History of Deep RL
	Slide 20: A Brief History of Deep RL
	Slide 21: More Recent Results
	Slide 22: More Recent Results
	Slide 23: Cutting-Edge Results
	Slide 24: The Obligatory “RLHF” Slide
	Slide 25: Deep Q-Networks (DQN)
	Slide 26: Deep Q-Networks (DQN)
	Slide 27: Deep Q-Networks (DQN)
	Slide 28
	Slide 29
	Slide 30: Ridiculously Naïve DQN Issues
	Slide 31: DQN Fixes: Experience Replay
	Slide 32: DQN Fixes: Reward Clipping/Normalising
	Slide 33: DQN Fixes: Fixed Target Network
	Slide 34
	Slide 35: Types of Reinforcement Learning Methods
	Slide 36: Why Policy-Based Methods?
	Slide 37: Aliased Gridworld
	Slide 38: Aliased Gridworld
	Slide 39: Aliased Gridworld
	Slide 40: Aliased Gridworld
	Slide 41: Aliased Gridworld
	Slide 42: Q-Network
	Slide 43: Policy Network
	Slide 44: Policy Gradient Methods
	Slide 45: Policy Gradient Methods
	Slide 46
	Slide 47
	Slide 48: Actor-Critic Methods
	Slide 49: Types of Reinforcement Learning Methods
	Slide 50: Deep Deterministic Policy Gradients
	Slide 51: DDPG Network Architecture
	Slide 52
	Slide 53: Trust Region Policy Updates
	Slide 54: Offline RL
	Slide 55: Inverse RL
	Slide 56: Intrinsically-Motivated RL
	Slide 57: Hierarchical RL
	Slide 58: Hierarchical RL
	Slide 59: Summary

