
Process automation
Programmable Logic Controllers (PLCs)

Programming – part 1

BS UNI studies, Fall semester 2025/2026

Octavian M. Machidon

octavian.machidon@fri.uni-lj.si

mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si

Outline

• Introduction to PLCs and Programming

• Overview and significance of PLCs.

• Early challenges and development of programming standards.

• IEC 61131-3 Standard

• Core programming languages (Ladder, Function Block).

• Typical program structures, data types, and addressing.

• Programming Objects and Initialization

• Programs, function blocks, tasks.

• Start-up procedures, memory management, and data persistence.

• Ladder Diagrams

• Basics, examples, and limitations.

• Extensions: advanced logic, timers, and counters.

Example: control without a PLC

Switch and Lightbulb Electromotor control

Evolution of standards for PLC programming

Before (Pre-IEC 61131)
• Ladder diagrams were not well-structured.
• Complex high-level languages were used for specific applications, aiming to simplify the programming

process.
IEC 61131 Standard
• Established in 1993, with the current 3rd edition released in 2013, describing an object-oriented approach

to programming.
• It aimed to standardize various PLC programming concepts.
• Part 3 of IEC 61131 defines the structures and programming languages used in PLC programming, including:

• Ladder diagram (LD)
• Function block diagram (FBD)
• Sequential function chart (SFC)
• Structured text (ST)
• Instruction list (IL) (marked as obsolete in the 3rd edition, note regarding TwinCAT)

Now (Current)
• Programs are almost transferable between different manufacturers or product series, and programming
concepts are definitely transferable.

IEC 61131-3 standard

Function Block Diagram (FBD)

Ladder Diagram (LD)

Sequential Function Chart (SFC)

Instruction List (IL)

Structured Text (ST)

Typical programming structures and data types

• Digital Inputs: %I*

• Digital Outputs: %Q*

• Memory: %M*

• Timers
• Measures time when a condition is met. Once the set time is reached, it triggers its contact.

• Counters
• Counts upwards or downwards when a condition is met.

• Binary Variable Grouping
• Byte (8-bit), Word (16-bit), Double Word (32-bit)

• Integer Variables (16- or 32-bit)

• Floating-Point Numbers (e.g., 3.14, 1.64e+009)

• Strings (‘Hello!’)

• Time (T#12h34m15s)

• Date (D#2023-07-23)

Programming objects - model

• The standard defines a model for allocating resources to individual objects

Configuration

Resource Resource

Task Task Task Task

Program Program Program Program Program

Function
Block

Function
Block

Function Function

Address Assignment and Access to I/O Devices

Program objects
• Objects that Contain Program Code for PLC – POU (program organization unit)

• Program – PRG
• Organizational unit at the highest level.
• Every project needs at least one program (typically MAIN)
• A program can contain calls to other programs, function blocks, and functions.
• You can call a program from another program or function block, but not from a function.
• The order of program calls in a project is defined in the task object. The task initializes the program.
• When the program finishes, the values of the variables are retained until the next call of the program.

• Function Block – FB
• Can have multiple inputs (VAR_INPUT) and outputs (VAR_OUTPUT).
• Has its own memory for internal variables (VAR, VAR_STAT).
• Internal and output variables retain their value until the next call, meaning that a function block returns different values on

successive calls with the same input arguments.
• A function block is always called through instances, i.e., copies. Each instance has its own copy of the variables.
• The most common type of POU.

• Function – FUN
• Returns exactly one element (can be an array or structure).
• Can have multiple inputs (VAR_INPUT) and outputs (VAR_OUTPUT).
• Does not have memory, so the values of variables between successive calls are not retained, meaning the same input

parameters will always yield the same output.
• Note: It is still possible to use static variables (VAR_STAT) in certain cases.

Program objects
• Every program object has two parts:

• Declarations:
• Variables that define the interface:

• Input: VAR_INPUT
• Output: VAR_OUTPUT
• Input/Output: VAR_IN_OUT

• Local variables:
• VAR
• VAR_TEMP (used only in PRG and FB): initialized with each call of the block.
• VAR_STAT (used only in FUN and FB): initialized only on the first call and remains for the

entire lifetime (same variable instance even with multiple calls of FUN or FB instances).

• Global variables (only in GVL, without implementation part): VAR_GLOBAL

• Implementation:
• Program code in the chosen IEC language that implements a specific functionality.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2526557579.html?id=5666203496547657263
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2526557579.html?id=5666203496547657263
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528205707.html?id=2725816890392780750
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528205707.html?id=2725816890392780750

Startup

• Initial startup (“original reset”):
• All variables are reset to their initial values, and the project on the controller

is also reset.

• Cold startup (“cold reset”):
• All variables are reset to their initial values, except those set as PERSISTENT or

RETAIN.

Addressing

• PLCs typically use fixed memory addressing — each input, output,
and memory area has a static address (e.g., %IX1.0, %QW2, %MD10).

• Traditional hardware PLCs do not use heap memory or dynamic
allocation, as all memory is predefined and deterministic for real-
time control.

• However, some modern or soft PLCs (running on general-purpose
operating systems like Windows or Linux) may include a heap for
non-critical tasks such as data logging, communication, or user-
interface operations.

Addressing

• Syntax:

• Examples
• %IX1.0: Input bit 0 in byte with address 1 (1 bit)
• %QB2: Output byte at address 2 (8 bits)
• %MW4: Memory data, 5th consecutive word (16 bits)
• %QD24: Output double word, 25th consecutive word (32 bits)

% type size number . number

Input I

Output Q

Memory M

X 1 bit

B 8 bits

W 16 bits

D 32 bits

Addressing – overlapping

• In memory, bits, bytes, words, and double words are arranged as follows:

• Warning: If you write something to %MW0 and then to %MB1, you have written
to the overlapping area in memory.

• Tip: In TwinCAT, it is recommended to use automatic address assignment with
wildcard symbols: %I*, %Q*, %M*. This allows optimization of access and
flexibility in address space allocation.

D0

W0

B0

X0.0

W1

B1 B2 B3

D1

W2

B4

W3

B5 B6 B7

D2

W4

B8 B9

X0.7…

Data types
Data type Lower limit Upper limit Size (bits)

BIT FALSE (0) TRUE (1) 1

BOOL FALSE (0) TRUE (1) 8

BYTE 0 (decimal) 255 8

2#0000_0000 (binary) 2#1111_1111 (binary)

8#000 (octal) 8#377 (octal)

16#00 (hexadecimal) 16#FF (hexadecimal)

WORD 0 65535 16

DWORD 0 4294967295 32

LWORD 0 2^64 – 1 64

TIME 0 = T#0ms 4294967295 = T#49d17h2m47s295ms 32

LTIME 0 = T#0ms T#213503d23h34m33s709ms551us615ns 64

DATE 0 = D#1970-01-01 4294967295 = D#2106-02-07 32

DATE_AND_TIME 0 = DT#1970-01-01-0:0:0 4294967295 = DT#2106-02-07-06:28:15 32

Data types - continued
Data type Lower limit Upper limit Size (bits)

SINT -128 127 8

USINT 0 255 8

INT -32768 32767 16

UINT 0 65535 16

DINT -2147483648 2147483647 32

UDINT 0 4294967295 32

LINT -2^63 2^63 - 1 64

ULINT 0 2^64-1 64

REAL -3.402823e+38 3.402823e+38 32

LREAL -1.7976931348623158e+308 1.7976931348623158e+308 64

Check out also the types STRING, WSTRING, ARRAY and ANY.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529410443.html?id=2168458334941937554
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529437323.html?id=7362291921204401557
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/8825253771.html?id=468140306937122500
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529426571.html?id=5023887767094520431

Ladder diagrams: standard

• The most used language for PLC

• Graphical language that enables an easy transition from electrical schematics to programming.

• Standard 61131-3

• Vertical Rails:
• The foundation of the ladder diagram.
• The left rail is connected to high voltage and represents logic 1.
• The right rail is connected to low voltage and represents logic 0.

• Connected Elements are Represented by Horizontal Connections:
• The state of the connected element is defined as “on” or “off” and corresponds to logic values 1 and 0. In the first case, it

allows the electrical current to flow, and in the second, it does not.

• Horizontal Connection:
• The state of the horizontal connection changes based on whether or not electric current flows through the element.
• When the element is turned on, the horizontal connection transfers the state from the left side of the element to the right

side.

• Vertical Connections Link One or More Connected Elements:
• The state of the vertical connection is “off” if all the horizontal connections are off.
• The state of the vertical connection is “on” if at least one horizontal connection is on.
• The state of the vertical connection is transferred to all horizontal connections on its right.
• Transferring the state to the left side of the vertical connection is not allowed.

Ladder diagrams: standard

Standard 61131-3

• Elements and connections form
ladder rungs (network)

• Typically, each rung has a set of
appropriately connected input
conditions, which control one or
more coils (outputs)
• Best practice:

• Each coil (output) should only appear in
the program at one place.

Example:
• Basic logical operations

Ladder diagrams: settings in TwinCAT

Navigation:

• Tools → Options → TwinCAT → PLC Environment
• Display of titles and comments in the rungs (networks)

• Font settings…

Limitations of ladder diagrams

• No vertical connections between
elements

• Current flows only from left to right
• Tools for creating such connections

typically don’t allow this

Ladder diagrams: changes
• Changes in Inputs and Outputs

• Inputs remain constant throughout the entire program cycle (parallel)

• Outputs change sequentially, rung by rung (sequential)

• The last output value is transferred to the physical output at the end of the memory image (output
buffer).

Ladder diagrams: extensions

• Basic ladder diagram only includes switches and relays

• Necessary extensions:
• Function and subprogram calls

• Jumps

• Use of structured data types

• Analog value processing

• Challenges:
• Programs become harder to understand

• The intuitiveness of switches and relays is lost

• Not suitable for large, complex projects

Ladder diagrams: examples

Bit M0 changes its value every cycle – we get a clock.

M1 is always FALSE

M0 is always TRUE

Memory cell: S0 is Set, S1 is Reset,
L0 is the state of Q

M1 will be TRUE only during the first cycle of program
execution.

Positive edge detection on S0. M1 will be TRUE for
exactly one cycle – when S0 changes from FALSE to
TRUE

Ladder diagrams: edge detection

• Front refers to a change in the value of a bit and lasts for one cycle.
• Positive Edge: When the value changes from FALSE to TRUE. This is detected using the

function block R_TRIG.

• Negative Edge: When the value changes from TRUE to FALSE. This is detected using the
function block F_TRIG.

Ladder diagrams: memory cell
• Memory cells RS (RESET takes precedence over SET) and SR (SET takes

precedence)

• Standard method using function

blocks
• Rungs 1 and 2

• Alternative method

with coils
• Rungs 3 and 4

Ladder diagrams: counters

“S3”

“S0”

“S1”

“S2”

“value”

Ladder diagrams: timer TP

Time diagram:

Pulse generator using a timer:

Ladder diagrams: TON timer

Time diagram:

Power-on delay (timer-on delay):

Ladder diagrams: TOF timer

Time diagram:

Off-delay (timer-off delay):

Ladder diagrams: timers
• Example: Prevention of premature reversal of motor direction through directional interlock

	Slide 1: Process automation Programmable Logic Controllers (PLCs) Programming – part 1
	Slide 2: Outline
	Slide 3: Example: control without a PLC
	Slide 4: Evolution of standards for PLC programming
	Slide 5: IEC 61131-3 standard
	Slide 6: Typical programming structures and data types
	Slide 7: Programming objects - model
	Slide 8: Program objects
	Slide 9: Program objects
	Slide 10: Startup
	Slide 11: Addressing
	Slide 12: Addressing
	Slide 13: Addressing – overlapping
	Slide 14: Data types
	Slide 15: Data types - continued
	Slide 16: Ladder diagrams: standard
	Slide 17: Ladder diagrams: standard
	Slide 18: Ladder diagrams: settings in TwinCAT
	Slide 19: Limitations of ladder diagrams
	Slide 20: Ladder diagrams: changes
	Slide 21: Ladder diagrams: extensions
	Slide 22: Ladder diagrams: examples
	Slide 23: Ladder diagrams: edge detection
	Slide 24: Ladder diagrams: memory cell
	Slide 25: Ladder diagrams: counters
	Slide 26: Ladder diagrams: timer TP
	Slide 27: Ladder diagrams: TON timer
	Slide 28: Ladder diagrams: TOF timer
	Slide 29: Ladder diagrams: timers

