Process automation

Programmable Logic Controllers (PLCs)
Programming — part 1

BS UNI studies, Fall semester 2025/2026

mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si

Outline

Introduction to PLCs and Programming
* Overview and significance of PLCs.
e Early challenges and development of programming standards.

IEC 61131-3 Standard
e Core programming languages (Ladder, Function Block).
e Typical program structures, data types, and addressing.

Programming Objects and Initialization
* Programs, function blocks, tasks.
 Start-up procedures, memory management, and data persistence.

Ladder Diagrams
* Basics, examples, and limitations.
e Extensions: advanced logic, timers, and counters.

Example: control without a PLC

Switch and Lightbulb

Bulb

@7

Switch ‘\

Electromotor control

Stop Start
.
olo o o O —
QOverload
Relay
or contactor coll
Relay
or contactor contact
L1 Three phase motor
L2
L3
Relay

or contactor contact

Evolution of standards for PLC programming

Before (Pre-IEC 61131)
e Ladder diagrams were not well-structured.
 Complex high-level languages were used for specific applications, aiming to simplify the programming
process.
IEC 61131 Standard
e Established in 1993, with the current 3rd edition released in 2013, describing an object-oriented approach
to programming.
* It aimed to standardize various PLC programming concepts.
 Part3 of IEC 61131 defines the structures and programming languages used in PLC programming, including:
* Ladder diagram (LD)
* Function block diagram (FBD)
* Sequential function chart (SFC)
e Structured text (ST)
* Instruction list (IL) (marked as obsolete in the 3rd edition, note regarding TwinCAT)
Now (Current)
e Programs are almost transferable between different manufacturers or product series, and programming
concepts are definitely transferable.

| EC 6 1 1 3 1—3 Sta N d ad rd Sequential Function Chart (SFC)

Function Block Diagram (FBD) STARTSTEP
AUTO CALC1 T _1
o CALC PonP STEP A S | ACTION D1
¥ sl >=1 > R| ACTION D2
MAN_ON - \"Am T ——
—QIN2
Ael STEP B R | ACTION D1
S | ACTION D2
Ladder Diagram (LD) 3
CALC1
AUTO CALC PUMP Structured Text (ST)
B R (VAR CONSTANT
L —] IN2 X ¢ REAL := 53.8;Z : REAL; END_VAR
MAN_ON VAR aFB, bFB : FB_type; END_VAR
— |
bFB(A:=1, B:="0K");
Instruction List (IL) Z := X - INT_TO_REAL (bFB.OUT1);
A: LD %IX1 (* PUSH BUTTON *) IF 2 > 57'0_THEN ?FE(AE=9’ E:f ERR™);
ANDN %MX5 (* NOT INHIBIT *) ELSE aFB(A:=1, B:="Z is OK");

ST %QX2 (* FAN ON *) END_IF

Typical programming structures and data types

* Digital Inputs: %I*
 Digital Outputs: %Q*
* Memory: %M*

* Timers
e Measures time when a condition is met. Once the set time is reached, it triggers its contact.

* Counters
e Counts upwards or downwards when a condition is met.

e Binary Variable Grouping
* Byte (8-bit), Word (16-bit), Double Word (32-bit)

* Integer Variables (16- or 32-bit)

* Floating-Point Numbers (e.g., 3.14, 1.64e+009)
e Strings (‘Hello!’)

 Time (T#12h34m15s)

* Date (D#2023-07-23)

Programming objects - model

* The standard defines a model for allocating resources to individual objects

Configuration

Resource Resource
Task Task Task Task
Program |— Program Program Program Program
Function Function Function Function
Block Block

Address Assignment and Access to |/O Devices

Program objects

Objects that Contain Program Code for PLC — POU (program organization unit)

Program PRG

Organizational unit at the highest level.

Every project needs at least one program (typically MAIN)

A program can contain calls to other programs, function blocks, and functions.

You can call a program from another program or function block, but not from a function.

The order of program calls in a project is defined in the task object. The task initializes the program.
When the program finishes, the values of the variables are retained until the next call of the program.

Function Block — FB

Can have multiple inputs (VAR_INPUT) and outputs (VAR_OUTPUT).
Has its own memory for internal variables (VAR, VAR_STAT).

Internal and output variables retain their value until the next call, meaning that a function block returns different values on
successive calls with the same input arguments.

A function block is always called through instances, i.e., copies. Each instance has its own copy of the variables.
The most common type of POU.

Function - FUN

Returns exactly one element (can be an array or structure).
Can have multiple inputs (VAR_INPUT) and outputs (VAR_OUTPUT).

Does not have memory, so the values of variables between successive calls are not retained, meaning the same input
parameters will always yield the same output.

Note: It is still possible to use static variables (VAR_STAT) in certain cases.

Program objects

* Every program object has two parts:

 Declarations:

* Variables that define the interface:
e Input: VAR_INPUT
« Output: VAR_OUTPUT
e Input/Output: VAR _IN_OUT
e Local variables:
* VAR
 VAR_TEMP (used only in PRG and FB): initialized with each call of the block.

e VAR_STAT (used only in FUN and FB): initialized only on the first call and remains for the
entire lifetime (same variable instance even with multiple calls of FUN or FB instances).

* Global variables (only in GVL, without implementation part): VAR_GLOBAL

* Implementation:
* Program code in the chosen IEC language that implements a specific functionality.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2526557579.html?id=5666203496547657263
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2526557579.html?id=5666203496547657263
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528205707.html?id=2725816890392780750
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2528205707.html?id=2725816890392780750

Startup

e Initial startup (“original reset”):
* All variables are reset to their initial values, and the project on the controller
is also reset.
e Cold startup (“cold reset”):

e All variables are reset to their initial values, except those set as PERSISTENT or
RETAIN.

Addressing

* PLCs typically use fixed memory addressing — each input, output,
and memory area has a static address (e.g., %1X1.0, %QW2, %MD10).

* Traditional hardware PLCs do not use heap memory or dynamic

allocation, as all memory is predefined and deterministic for real-
time control.

 However, some modern or soft PLCs (running on general-purpose
operating systems like Windows or Linux) may include a heap for
non-critical tasks such as data logging, communication, or user-
interface operations.

Addressing

* Syntax:
D -
Input X 1 bit
Output Q B 8 bits
Memory M W 16 bits
D 32 bits
* Examples

* %IX1.0: Input bit 0 in byte with address 1 (1 bit)

* %QB2: Output byte at address 2 (8 bits)

* %MW4: Memory data, 5th consecutive word (16 bits)

* %QD24: Output double word, 25th consecutive word (32 bits)

Addressing — overlapping

* In memory, bits, bytes, words, and double words are arranged as follows:

D)

. _

x0.0 [X0.7

* Warning: If you write something to %sMWO0 and then to %MB1, you have written
to the overlapping area in memory.

* Tip: In TwinCAT, it is recommended to use automatic address assignment with
wildcard symbols %1*, %Q*, %M*. This allows optimization of access and
flexibility in address space allocation.

Data types
mw

FALSE (0) TRUE (1)
BOOL FALSE (0) TRUE (1) 8
BYTE 0 (decimal) 255 8

2#0000_0000 (binary) 2#1111 1111 (binary)

8#000 (octal) 8#377 (octal)

16#00 (hexadecimal) 16#FF (hexadecimal)
WORD 0 65535 16
DWORD 0 4294967295 32
LWORD 0 2764 -1 64
TIME 0 =T#Oms 4294967295 = T#49d17h2m47s295ms 32
LTIME 0 =THOms T#213503d23h34m33s709ms551us615ns 64
DATE 0 =D#1970-01-01 4294967295 = D#2106-02-07 32

DATE_AND_TIME 0 =DT#1970-01-01-0:0:0 4294967295 = DT#2106-02-07-06:28:15 32

Data types - continued
L S S Y N

SINT -128

USINT 0 255 8
INT -32768 32767 16
UINT 0 65535 16
DINT -2147483648 2147483647 32
UDINT 0 4294967295 32
LINT -2763 27263 -1 64
ULINT 0 2764-1 64
REAL -3.402823e+38 3.402823e+38 32
LREAL -1.7976931348623158e+308 1.7976931348623158e+308 64

Check out also the types STRING, WSTRING, ARRAY and ANY.

https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529410443.html?id=2168458334941937554
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529437323.html?id=7362291921204401557
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/8825253771.html?id=468140306937122500
https://infosys.beckhoff.com/content/1033/tc3_plc_intro/2529426571.html?id=5023887767094520431

Ladder diagrams: standard

* The most used language for PLC

* Graphical language that enables an easy transition from electrical schematics to programming.
e Standard 61131-3

* Vertical Rails:
* The foundation of the ladder diagram.
e The left rail is connected to high voltage and represents logic 1.
* The right rail is connected to low voltage and represents logic O.

e Connected Elements are Represented by Horizontal Connections:
* The state of the connected element is defined as “on” or “off” and corresponds to logic values 1 and 0. In the first case, it
allows the electrical current to flow, and in the second, it does not.
* Horizontal Connection:
* The state of the horizontal connection changes based on whether or not electric current flows through the element.
. Wdhen the element is turned on, the horizontal connection transfers the state from the left side of the element to the right
side.
* Vertical Connections Link One or More Connected Elements:
* The state of the vertical connection is “off” if all the horizontal connections are off.
* The state of the vertical connection is “on” if at least one horizontal connection is on.
e The state of the vertical connection is transferred to all horizontal connections on its right.
* Transferring the state to the left side of the vertical connection is not allowed.

Ladder diagrams: standard

Standard 61131-3

 Elements and connections form
ladder rungs (network)

* Typically, each rung has a set of
appropriately connected input
conditions, which control one or
more coils (outputs)

* Best practice:

e Each coil (output) should only appear in
the program at one place.

Example:
* Basic logical operations

PROGRAM

2 VAR

MO:
M1:
S0:
LO:
81:
Ll:
L2:

0 END VAR

p00_true false

BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;
BOOL;

Ladder diagrams: settings in TwinCAT

Navigation:
* Tools = Options - TwinCAT - PLC Environment

* Display of titles and comments in the rungs (networks)
* Font settings.

Options ? X
Search Options (Ctrl+E el General FBD LD IL Print

b F= Tools ~ View Behavior

b IntelliCode] Show network title Placeholder for new operands

b Live Share (] Show network comment [[] Empty operands for function block pins

I MuGet Package Manager k] Show box icon

I SQL Server Tocls |:| Show operand comment

b Test [Show symbol comment

b Text Templating [Show symbol address

b Togls For Unity Show network separators

4 TwinCAT

Embedded Browser Font (click onto the sample to edit) [[] Fixed size for operand fields:

B HMI Environment

P Measurement

4 PLC Environment
CFC editor
Declaration editor

FBD, LD and IL editor

Libraries v

Edit operand sizes
AaBbCcXxYyZz

Limitations of ladder diagrams

 No vertical connections between |

N =

SR

elements

* Current flows only from left to right |

* Tools for creating such connections
typically don’t allow this

Ladder diagrams: changes

* Changes in Inputs and Outputs
* Inputs remain constant throughout the entire program cycle (parallel)
e Qutputs change sequentially, rung by rung (sequential)

* The last output value is transferred to the physical output at the end of the memory image (output
buffer).

Expression Type Value Prepared value Address Commen it =

$ S0 BOOL %I

$ S1 BOOL %I*

» L0 BOOL FALSE %Q

$ L1 BOOL TRUE %Q*

l|e
Se Le
Il | il
IIIlI L} B
Lo L1
1770 i |
10k A)
S1 Le
1710 I
10k {Lh

Ladder diagrams: extensions

e Basic ladder diagram only includes switches and relays

* Necessary extensions:
* Function and subprogram calls

11
i .l u m pS pl0_directionallnterlock

p09 timers

* Use of structured data types ..
. s0 pll logicalFunction
* Analog value processing N a

s1

I x2

v L0

3 pl2 controllLight instance

I0.ButtonRed pl2 controlLight I0.LEDRed

[| |] button light E D

* Challenges:

* Programs become harder to understand
* The intuitiveness of switches and relays is lost

* Not suitable for large, complex projects

Ladder diagrams: examples

Me

Me

()

/1

Bit MO changes its value every cycle — we get a clock.

1

/1 ()
] | ()
i

M1 will be TRUE only during the first cycle of program
execution.

M1 M1 M1
1 /] (]
M1 is always FALSE
Me M@
1 ()

[leeﬂ MO is always TRUE
5@ S1 L@
I /] ()

Memory cell: SO is Set, S1 is Reset,
LO is the state of Q

50 Me M1

] 17 ()

Positive edge detection on SO. M1 will be TRUE for
exactly one cycle — when SO changes from FALSE to
TRUE

Ladder diagrams: edge detection

* Front refers to a change in the value of a bit and lasts for one cycle.
* Positive Edge: When the value changes from FALSE to TRUE. This is detected using the

function block R_TRIG.
* Negative Edge: When the value changes from TRUE to FALSE. This is detected using the

function block F_TRIG.

O

PositiveEdge

a0 R__TRIG
] CLK .z;x._ Q (]
MNegativeEdge
g0 F_TRIG Il
] 1 CLE _.;;x. Q (]
3 PositiveFrontExpr

20 =21 R TRIG L2

()

CLE

][

][

K

9]

Ladder diagrams: memory cell
 Memory cells RS (RESET takes precedence over SET) and SR (SET takes

precedence)

e Standard method using function

blocks
* Rungs1land?2

e Alternative method

with coils
* Rungs3and4

RS cell

EEEEEE

EEEEE

0
)

11
)

L2
(=)

L2
(=)

Ladder diagrams: counters

lls3" (LD)

“s0” (CU) i]]

“51" (CD)

uszn (R)

“value” (CV)

40 §

counter
30 CTUD
| 1 cu R Qu
h oD

a1 cv
| [cD
52
| 1 RESET
=3
| [LOAD

42 —pV

— wvalue

Ladder diagrams: timer TP

Pulse generator using a timer: pulseTimer

Time diagram:

IN

30 TP

e
T§5s — BT E

T

—ptValue

r

PT

PT PT

ET

PT—/

I

Ladder diagrams: TON timer

Power-on delay (timer-on delay):

Time diagram:
IN #

ET

PT]

PT

— ontValue

onDelayTimer
50 TON
Il IN Q
T#5s —PT ET

Ladder diagrams: TOF timer

Off-delay (timer-off delay): offDelayTimer
a0 TOF
| 1 IN Q
T#5s —PT ET

Time diagram:

— oftValues

IN
Q
’.L
ET
PT /7

Ladder diagrams: timers

* Example: Prevention of premature reversal of motor direction through directional interlock

interlocks0
50 TOF
I 1 IN a o—
T§ls — BT ET —
interlocksl
= TOF
I 1 IN a o—
T§ls — BT ET —
30 interloccksSl.Q L0
1 [171 (]
31 interlccksS0.Q Ll
| [171]

	Slide 1: Process automation Programmable Logic Controllers (PLCs) Programming – part 1
	Slide 2: Outline
	Slide 3: Example: control without a PLC
	Slide 4: Evolution of standards for PLC programming
	Slide 5: IEC 61131-3 standard
	Slide 6: Typical programming structures and data types
	Slide 7: Programming objects - model
	Slide 8: Program objects
	Slide 9: Program objects
	Slide 10: Startup
	Slide 11: Addressing
	Slide 12: Addressing
	Slide 13: Addressing – overlapping
	Slide 14: Data types
	Slide 15: Data types - continued
	Slide 16: Ladder diagrams: standard
	Slide 17: Ladder diagrams: standard
	Slide 18: Ladder diagrams: settings in TwinCAT
	Slide 19: Limitations of ladder diagrams
	Slide 20: Ladder diagrams: changes
	Slide 21: Ladder diagrams: extensions
	Slide 22: Ladder diagrams: examples
	Slide 23: Ladder diagrams: edge detection
	Slide 24: Ladder diagrams: memory cell
	Slide 25: Ladder diagrams: counters
	Slide 26: Ladder diagrams: timer TP
	Slide 27: Ladder diagrams: TON timer
	Slide 28: Ladder diagrams: TOF timer
	Slide 29: Ladder diagrams: timers

