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1. Introduction

Collective animal behaviour is a fascinating field that analyses how simple ac-
tions of an individual influence the complex global dynamics of a group. Aris-
totle once stated: “The whole is greater than the sum of its parts.”—a statement
that describes the essence of collective animal behaviour. Typical examples
are flocks of birds, schools of fish, swarms of insects, and herds of ungulates;
phenomena that can be easily observed in nature. Results from studies of col-
lective animal behaviour are useful for scientists from many different research
fields—biology, physics, medicine, to computer science, and control theory
[9, 25, 28, 39, 41, 43, 44]. Since humans behave similarly as groups of animals
in a wide repertoire of situations (e.g. traffic jams and behaviour at large-scale
events, such as sport games, and music concerts) collective animal behaviour is
also interesting from the social studies perspective [37, 39, 44].

. . .
With computational models it has been demonstrated that complex collec-

tive animal behaviour can emerge if individuals follow simple rules or drives.
The first attempts at modelling collective animal behaviour via individual-based
models were made in the 1980s. Aoki [1] proposed a bottom-up approach to the
simulation of schooling mechanisms in fish. Reynolds [34] presented the first
computer model for procedural animation of flocking birds. Heppner & Grenan-
der [18], working on a similar project, modelled the behaviour of birds with
stochastic non-linear differential equations. These and subsequent individual-
based models [8, 11, 12, 19, 25, 32, 35, 39, 40] typically describe the artificial
animals (animats) through perception, drives and action selection [24]. They
differ in the way they implement individual parts, but in most models the be-
haviour is a constant blending of three drives called cohesion, separation, and
alignment.

Cohesion denotes the attraction toward other individuals and is usually mod-
elled as the tendency to move towards distant individuals when there are none
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nearby. Separation models the tendency to move away from neighbours that
are too close, to avoid collisions. The third drive–alignment–models the ten-
dency to synchronize velocity (direction and speed of movement) with nearby
neighbours. As a perfect synchronization of movements will prevent collisions
and dispersion the alignment drive can be interpreted also as a passive form of
avoidance and attraction, and due to this some models concentrate exclusively
on the alignment drive [41].

Most of the models encode the drives by means of equations, where for
example cohesion is typically encoded as a force vector directing the animat
towards the centroid of nearby neighbours [25, 40]. Some models, however,
encode the drives by means of fuzzy rule-based systems to facilitate the use of
expert knowledge in the construction of additional drives [10, 11, 13, 26].

Perception and the act of filtering out only the most important information
about the surrounding environment is typically modelled either as continuous or
zone-based, and metric, or topological. In the case of a continuous perception,
all drives are computed based on the same set of nearby neighbours [18, 26, 34],
whereas in the case of a zone-based perception, specific drives take into account
only neighbours that are within a specific zone [1, 8, 14, 15]. While most mod-
els use a distance-limited (metric) perception, where the set of individuals with
which an animat interacts is limited by distance, some studies suggest that inter-
action is number-limited (topological) [2]. In this case an animat interacts with
a specific number of closest neighbours, regardless of their distance. Research
suggests that in the case of topological perception, which is also spatially bal-
anced, groups are more stable then in the case of a metric perception, and more
resilient to external perturbations [5].

A combination of the metric and topological perception, where animats per-
form a double evaluation of their drives (one with metric, one with topological
perception), was, on the other hand, proposed by Niizato & Gunji [29]. This
metric-topological perception generates inherent noise and prevents the collapse
of the group, while producing a scale-free correlation [30, 31]. However, Vis-
cido, et al. [42] and Hemelrijk & Hildenbrandt [16] suggest that there is a strong
influence of the number of influential neighbours on the properties of the group.
Shang & Buffonais [36] suggest that interaction with approximately 10 clos-
est neighbours speeds up the rate of convergence to consensus, irrespective to
the group’s size. In addition, a recent study by Hemelrijk & Hildenbrandt [17]
suggests that there may be differences in topological range for avoidance ver-
sus attraction and alignment, thus also providing further evidence for the use



Studying Predation Tactics on Grouping Prey ... 3

of zone-based perception. Indeed, the study was able to reproduce empirical
data from physicists in Rome [6] by assuming that individuals avoid a single
closest neighbour only and align with and are attracted to their seven closest
neighbours. Similarly, but with continuous metric perception, where the proba-
bility of interaction between two individuals was inversely proportional to their
distance, Bode, et al. [4] were capable of replicating the anisotropic nature of in-
teractions observed in an older empirical study by the same group of physicists
in Rome [2, 3].

In the case of individual-based models that use fuzzy rule-based systems
to encode the drives [10, 11, 24, 26] perception can be viewed as a mixture
between a continuous and a zone-based one, regardless if it is implemented as
metric or topological. In other words, even if all drives are computed based
on the same set of nearby neighbours, the use of rules that take into account
their distances, allows to achieve a similar effect as a zone-based perception
(i.e. rules of individual drives can be used to create either strong, blurred or
non-existing inter-zone boundaries).

Recently, researchers are concentrating on visual perception. For example
Lemasson, et al. [27] investigate motion-guided attention. Other studies either
concentrate on taking into account visual occlusion regardless if perception is
implemented as continuous or zone-based, metric or topological [10, 11, 20],
or select the interacting individuals [38] or compute drives [7, 33] based on the
occupied angular area on the retina of the observed animat. Larsson [21–23],
on the other hand, proposes a multi-sensory approach to perception.

. . .
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6 Demšar and Lebar Bajec

[23] M. Larsson. Binocular vision, the optic chiasm, and their associations
with vertebrate motor behavior. Frontiers in Ecology and Evolution, 3:89,
2015. doi: 10.3389/fevo.2015.00089.

[24] I. Lebar Bajec. Fuzzy Model for a Computer Simulation of Bird Flocking.
PhD thesis, University of Ljubljana, Faculty of Computer and Information
Science, Ljubljana, Slovenia, 2005.

[25] I. Lebar Bajec and F. Heppner. Organized flight in birds. Animal Be-
haviour, 78(4):777–789, 2009. doi: 10.1016/j.anbehav.2009.07.007.

[26] I. Lebar Bajec, N. Zimic, and M. Mraz. Simulating flocks on the wing: the
fuzzy approach. Journal of Theoretical Biology, 233(2):199–220, 2005.
doi: 10.1016/j.jtbi.2004.10.003.

[27] B. H. Lemasson, J. J. Anderson, and R. A. Goodwin. Motion-guided at-
tention promotes adaptive communications during social navigation. Pro-
ceedings of the Royal Society of London B: Biological Sciences, 280
(1754):20122003, 2013. doi: 10.1098/rspb.2012.2003.

[28] P. Nahin. Chases and Escapes: The Mathematics of Pursuit and Evasion.
Princeton University Press, 2012. ISBN 9780691155012.

[29] T. Niizato and Y.-P. Gunji. Metric–topological interaction model of col-
lective behavior. Ecological Modelling, 222(17):3041–3049, 2011. doi:
10.1016/j.ecolmodel.2011.06.008.

[30] T. Niizato and Y.-P. Gunji. Fluctuation-driven flocking movement in three
dimensions and scale-free correlation. PLoS ONE, 7(5):e35615, 05 2012.
doi: 10.1371/journal.pone.0035615.

[31] T. Niizato, H. Murakami, and Y.-P. Gunji. Emergence of the scale-
invariant proportion in a flock from the metric-topological interaction.
Biosystems, 119:62–68, 2014. doi: 10.1016/j.biosystems.2014.03.001.

[32] J. K. Parrish, S. V. Viscido, and D. Grünbaum. Self-organized fish schools:
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[41] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type
of phase transition in a system of self-driven particles. Physical Review
Letters, 75(6):1226–1229, 1995. doi: 10.1103/PhysRevLett.75.1226.

[42] S. V. Viscido, J. K. Parrish, and D. Grünbaum. The effect of popula-
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