Optimal orthogonal transformation

A rigid transformation $\mathbb{R}^k \to \mathbb{R}^k$ is the composition of a rotation and a translation. The position vector \mathbf{x} of a point on the solid gets mapped into a new position vector $\mathbf{y} = Q\mathbf{x} + \mathbf{b}$, where the matrix Q determines the rotation, and the vector \mathbf{b} determines the translation.

The task is to find the matrix Q and the vector \mathbf{b} knowing the position vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ of some characteristic points of the solid before the rigid transformation and position vectors $\mathbf{y}_1, \ldots, \mathbf{y}_n$ of these points after the transformation. This is a well known problem appearing in computer graphics, cheminformatics and bioinformatics.

Naïve approach

Given data $\mathbf{x}_1, \ldots, \mathbf{x}_n$ and $\mathbf{y}_1, \ldots, \mathbf{y}_n$ we have the following system of equations:

$$Q\mathbf{x}_i + \mathbf{b} = \mathbf{y}_i, \quad i = 1, \ldots, n$$

$$Q^TQ = I$$

with unknowns

$$Q = \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1k} \\ q_{21} & q_{22} & \cdots & q_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ q_{k1} & q_{k2} & \cdots & q_{kk} \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}.$$

(This is a system of $kn + k^2$ equations in $k^2 + k$ unknowns.) Problem: k^2 equations determined by $Q^TQ = I$ are not linear. Naïve solution: Ignore $Q^TQ = I$ and solve the remaining kn equations in $k^2 + k$ unknowns:

$$Q\mathbf{x}_i + \mathbf{b} = \mathbf{y}_i, \quad i = 1, \ldots, n.$$

Assume that $n \geq 2k$, which gives us an (over)determined system of linear equations.

Write down the matrix of this system and find the linear least squares solution of this system; matrix Q' and vector \mathbf{b}. Since Q' is not necessarily orthogonal we make a (naïve) correction: Find the QR decomposition $Q' = QR$ of Q' and replace Q' with Q. The solution to the problem now consists of the matrix Q and the vector \mathbf{b}.
Kabsch algorithm

We can obtain the translation vector \mathbf{b} as the translation of the center of mass of the points \mathbf{x}_i and \mathbf{y}_i. If we set

$$\mathbf{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \quad \text{and} \quad \mathbf{y} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_i,$$

then $\mathbf{b} = \mathbf{y} - Q \mathbf{x}$.

Now set $\mathbf{x}'_i = \mathbf{x}_i - \mathbf{x}$ and $\mathbf{y}'_i = \mathbf{y}_i - \mathbf{y}$. The rotation matrix Q is an orthogonal matrix, which must satisfy the conditions $Q \mathbf{x}'_i = \mathbf{y}'_i$ for all $i = 1, \ldots, n$. (Check that!) If we denote by X' and Y' the matrices

$$X' = [\mathbf{x}'_1, \ldots, \mathbf{x}'_n] \quad \text{and} \quad Y' = [\mathbf{y}'_1, \ldots, \mathbf{y}'_n],$$

we can merge our conditions into $Q X' = Y'$. We then obtain Q using SVD with the following steps:

1. Evaluate the $k \times k$ covariance matrix $C = Y' X'^T$.
2. Find the SVD of the matrix C, $C = USV^T$.
3. Replace the matrix S with the diagonal matrix

$$D = \begin{bmatrix}
1 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & 0 \\
0 & \cdots & 0 & d
\end{bmatrix},$$

where $d = \pm 1$ is the sign of $\det(C)$ or $\det(UV^T)$.
4. The matrix Q is then $Q = U D V^T$.

Task

1. Derive and write down the matrix and the right-hand side of the linear system obtained with ‘naïve approach’.

2. Write an octave function $[Q, b] = \text{naive}(X, Y)$ which, given input data $X = [\mathbf{x}_1, \ldots, \mathbf{x}_n]$ and $Y = [\mathbf{y}_1, \ldots, \mathbf{y}_n]$, returns the matrix Q and vector \mathbf{b} described in ‘naïve approach’. Stick to specifications: X and Y are matrices, in which the columns are position vectors of points, Q is a square matrix, \mathbf{b} is a column.
3. Explain why the determinants of the matrices C and UV^T from Kabsch algorithm are of the same sign.

4. Write an octave function $[Q, b] = \text{kabsch}(X, Y)$ which, given input data $X = [x_1, \ldots, x_n]$ and $Y = [y_1, \ldots, y_n]$, returns the matrix Q and vector b described in Kabsch algorithm. Stick to specifications: X and Y are matrices, in which the columns are position vectors of points, Q is a square matrix, b is a column.

Submission

Use the online classroom to submit the following:

1. files `naive.m` and `kabsch.m` which should be well-commented and contain at least one test,

2. a report file `solution.pdf` which contains the necessary derivations and answers to questions.

While you can discuss solutions of the problems with your colleagues, the programs and report must be your own creation. You can use all octave functions from problem sessions.