We’ll finish the last week’s exercise and then solve the exercise below.

1. Let

\[A = \begin{bmatrix}
-1 & 1 & 2 \\
1 & -1 & -2 \\
1 & -1 & 2 \\
-1 & 1 & -2
\end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix}
3 \\
-3 \\
2 \\
0
\end{bmatrix}. \]

(a) Find at least one generalized inverse of the matrix \(A \), i.e. a matrix \(G \) such that \(AGA = A \).

(b) Is the system \(Ax = b \) solvable? Find the orthogonal projection \(b' \) of the vector \(b \) onto \(C(A) \) and find all the solutions of the system \(Ax = b' \).

(c) Find the singular value decomposition of \(A \); \(A = USV^T \). This can be obtained using the eigenvalue decomposition of \(A^T A \).

(d) Find the Moore–Penrose pseudoinverse of \(A \) and compute \(A^+b \). Explain the result.

(e) Solve the exercise in octave, using the commands \(\text{svd}(A) \) and \(\text{pinv}(A) \).