Solving systems of nonlinear equations

We would like to find a solution (or at least an approximate solution) to a system of nonlinear equations. For example

\[x_1^2 - x_2^2 = 1, \]
\[x_1 + x_2 - x_1x_2 = 1. \]

This system is equivalent to the system

\[x_1^2 - x_2^2 - 1 = 0, \]
\[x_1 + x_2 - x_1x_2 - 1 = 0. \]

If we set \(F(x_1, x_2) = [x_1^2 - x_2^2 - 1, x_1 + x_2 - x_1x_2 - 1]^T \), we can rewrite this system as

\[F(x) = 0, \]

where \(x = [x_1, x_2]^T \). In other words, we are looking for zeros of a vector function of several variables.

Let us formulate a more general problem. Let \(U \subseteq \mathbb{R}^n \) the domain of the function \(F, F: U \to \mathbb{R}^n \). The idea is to generalise Newton’s method for finding approximations to zeros of a functions of a single variable, which suggests that for \(f: D \to \mathbb{R} \) we pick an initial guess \(x^{(0)} \in D \) and then iteratively improve the accuracy of the solution using the recursive formula

\[x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}. \]

For a vector function \(F(x) = [F_1(x_1, \ldots, x_n), \ldots, F_n(x_1, \ldots, x_n)]^T \) we must substitute the derivative \(f' \) with the *Jacobi matrix* of the function \(F \):

\[JF = \left[\frac{\partial F_i}{\partial x_j} \right]_{i,j}. \]

One step of *Newton’s iteration* is then written as

\[x^{(k+1)} = x^{(k)} - (JF)^{-1}F(x^{(k)}). \]

1. Find the approximate solution \([x_1, x_2]^T\) to the system

\[x_1^2 - x_2^2 = 1, \]
\[x_1 + x_2 - x_1x_2 = 1, \]

which is accurate to 10 decimal places.

Write an *octave* function \(x = \text{newton}(F, JF, x0, to1, maxit) \) which performs Newton’s iteration with the initial approximation \(x0 \) for the function \(F \) and Jacobi matrix function \(JF \). We use \(\text{maxit} \) to limit the maximum number of allowed iterations (in order to avoid a potentially infinite loop), and we use \(\text{to1} \) to prescribe the desired accuracy.
2. Let f be a function of two variables, x and y. We would like to find a sequence of equidistant points (according to the Euclidean distance) on the curve defined by

$$f(x, y) = 0$$

Denote the given distance between two successive points by δ. Assume that the first point (x_0, y_0) is given. The next point, say (x, y), is determined by the conditions that the distance from (x_0, y_0) equals δ, and that it lies on the curve $f(x, y) = 0$. This means that (x, y) should solve the system of equations

$$f(x, y) = 0,$$

$$(x - x_0)^2 + (y - y_0)^2 = \delta^2.$$

The next point is therefore obtained as a solution to this system, and we denote this solution by (x_1, y_1). We repeat the procedure to obtain the next point (x_2, y_2) and so on.

Write an octave function $K = krivulja(f, gradf, T0, delta, n)$ that returns the $2 \times n$ matrix K containing the coordinates of the sequence of points on $f(x, y) = 0$, with mutual distances δ. (f is the given function of two variables and $\text{grad}f$ is its gradient, $T0$ is the initial point).