1. **Principal component analysis (PCA).** Assume that we represent given data (row vectors) $\mathbf{x}_1^{\mathsf{T}}, \mathbf{x}_2^{\mathsf{T}}, \dots, \mathbf{x}_n^{\mathsf{T}}$ as rows of a matrix

$$X = \begin{bmatrix} \mathbf{x}_1^{\mathsf{I}} \\ \mathbf{x}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_n^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{n \times d}.$$

We view components of vectors $\mathbf{x}_i^{\mathsf{T}}$ as various features of observed objects. Columns \mathbf{c}_j of the matrix $X = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_d]$ are often called *feature vectors*.

The objective of this task is to find so-called *principal components* $\mathbf{y}_1, \dots, \mathbf{y}_d \in \mathbb{R}^n$ which are uncorrelated projections of data $\mathbf{x}_i^{\mathsf{T}}$ onto unit vectors $\mathbf{v}_1^{\mathsf{T}}, \dots, \mathbf{v}_d^{\mathsf{T}}$, such that the variances var (\mathbf{y}_i) are maximized. Some anchor points:

• *Centralization of data:* Subtract the mean value from each column of *X* to obtain

$$\overline{X} := X - [\boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots, \boldsymbol{\mu}_d]$$

where $\boldsymbol{\mu}_j = \boldsymbol{\mu}_j [1, ..., 1]^T$ and $\boldsymbol{\mu}_j$ is the average value of components of the feature vector \mathbf{c}_i .

- Evaluation of the singular value decomposition of \overline{X} : $\overline{X} = USV^{\mathsf{T}}$ where $U = [\mathbf{u}_1, \dots, \mathbf{u}_n] \in \mathbb{R}^{n \times n}$, $V = [\mathbf{v}_1, \dots, \mathbf{v}_d] \in \mathbb{R}^{d \times d}$, and $S \in \mathbb{R}^{n \times d}$ is a diagonal matrix with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d$ on the diagonal.
- *Principal components* of *X* are $\mathbf{y}_1, \dots, \mathbf{y}_d \in \mathbb{R}^n$ obtained as

$$\mathbf{y}_j = X\mathbf{v}_j = \sigma_j \mathbf{u}_j.$$

Answer questions below.

- (a) Let $\Sigma = \frac{1}{n-1} \overline{X}^T \overline{X}$. Show that for any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ we have $\operatorname{cov}(X\mathbf{v}, X\mathbf{w}) = \mathbf{v}^T \Sigma \mathbf{w}$.
- (b) How can var(\mathbf{y}_i) := cov($\mathbf{y}_i, \mathbf{y}_i$) be expressed with singular values of \overline{X} ?
- (c) Evaluate $cov(\mathbf{y}_i, \mathbf{y}_k)$ za $j \neq k$.

Write these three Octave functions:

- [mu, Vk, Uk, Dk]=pca(X, k) which for a given data matrix X and an integer k, 0 ≤ k ≤ min(n, d), returns averages mu, matrices Vk and Uk containing first k left/right principal directions, and a vector Dk with first k variances var(y_i),
- Z=proj(X) which for a given data matrix X returns the projection of $\mathbf{x}_i^{\mathsf{T}} [\mu_{i1}, \dots, \mu_{id}]$ onto largest two principal directions and draws a picture of both principal directions and projections of data,

• r=threshold(X, p) which for a data matrix X and a number $p \in [0,1]$ returns the smallest integer r, such that

$$\frac{\operatorname{var}(\mathbf{y}_1) + \dots + \operatorname{var}(\mathbf{y}_r)}{\operatorname{var}(\mathbf{y}_1) + \dots + \operatorname{var}(\mathbf{y}_d)} \ge p$$

holds.