University of Ljubljana, Faculty of Computer and Information Science

Swarm intelligence

Prof Dr Marko Robnik-Šikonja

Analysis of Algorithms and Heuristic Problem Solving Version 2023

Nature inspired methods

* Besides evolutionary computation, nature is an inspiration for many other computational algorithms.
* Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial.
* A population of simple agents interacting locally with one another and with their environment.
* The agents follow very simple rules, and although there is no centralized control structure dictating how individual agents should behave, local, and to a certain degree random, interactions between such agents lead to the emergence of "intelligent" global behavior, unknown to the individual agents.
* Examples in natural systems of SI include ant colonies, bird flocking, animal herding, bacterial growth, fish schooling and microbial intelligence.

Computational SI

* Computational properties
\% Fixed population
\because Autonomous individual
\because Communication between agents
* We will cover
\% Particle swarm optimization
\%Ant colony optimization

Swarming - the definition

* Aggregation of similar animals, generally cruising in the same direction
* Termites swarm to build colonies
* Birds swarm to find food
* Bees swarm to reproduce

Swarming is powerful

* Swarms can achieve things that an individual cannot

Human swarms

Powerful ... but simple

All evidence suggests:

* No central control
* Only simple rules for each individual
* Emergent phenomena
* Self-organization

Harness this power out of simplicity

* Technical systems are getting larger and more complex
\% Global control hard to define and program \% Larger systems lead to more errors
* Swarm intelligence systems are:
\% Robust
\& Relatively simple (How to program a swarm?)

Swarming - example

* Bird flocking
*"Boids" model was proposed by Reynolds (1985)
\% Boids = Bird-oids (bird like)
* Only three simple rules

Collision Avoidance

* Rule 1: Avoid Collision with neighboring birds

Velocity matching

* Rule 2: Match the velocity of neighboring birds

Flock centering

*. Rule 3: Stay near neighboring birds

Define the neighborhood

* Model the view of a bird
* Only local knowledge, only local interaction
* Affects the swarm behavior (fish vs. birds)

Swarming - characteristics

* Simple rules for each individual
* No central control
\& Decentralized and hence robust
* Emergent
\% Performs complex functions

Ant Colony Optimization - Biological Inspiration

* Inspired by foraging behavior of ants.
* Ants find shortest path to food source from nest.
* Ants deposit pheromone along traveled path which is used by other ants to follow the trail.
* This kind of indirect communication via the local environment is called stigmergy.
* Has adaptability, robustness and redundancy.

Foraging behavior of Ants

* 2 ants start with equal probability of going on either path.

Foraging behavior of Ants

* The ant on shorter path has a shorter to-and-fro time from it's nest to the food.

Foraging behavior of Ants

* The density of pheromone on the shorter path is higher because of 2 passes by the ant (as compared to 1 by the other).

Foraging behavior of Ants

* The next ant takes the shorter route.

Foraging behavior of Ants

* Over many iterations, more ants begin using the path with higher pheromone, thereby further reinforcing it.

Foraging behavior of Ants

*. After some time, the shorter path is almost exclusively used.

Ant colony

* Pheromones
* Ants lead their sisters to food source
* Evaporation
* Moving targets

Illustration of the dynamic adaptation

Illustration of the dynamic adaptation

Generic ACO

* Formalized into a metaheuristic.
* Artificial ants build solutions to an optimization problem and exchange info on their quality vis-àvis real ants.
* A combinatorial optimization problem reduced to a construction graph.
* Ants build partial solutions in each iteration and deposit pheromone on each edge.

ACO pseudo code

Initialization of pheromones
do \{
for each ant
find solution: use pheromones and cost of path to select route apply local optimization (optional)
update pheromones: enforcement, evaporation
\} while (! satisfied)
return best overall solution

ACO details

* Pheromones updates
* ρ speed of evaporation
\% Trails updates
\% Many variants

$$
\tau_{i, j}=(1-\rho) \tau_{i, j}+\Delta \tau_{i, j}
$$

$$
\begin{aligned}
& \Delta \tau_{i, j}=\left\{\begin{array}{cc}
1 / C & \text { if ant takes the connection between } \mathrm{i}, \mathrm{j} \\
0 & \text { otherwise }
\end{array}\right\}, \\
& \text { where } C \text { is a cost of edge } \mathrm{i}, \mathrm{j}
\end{aligned}
$$

ACO for TSP

* Cities 1,2,..,n
* Cost $\mathrm{c}_{\mathrm{i}, \mathrm{j}}$
* Construct the cheapest Hamiltonian tour through cities
* Attractiveness $\eta_{i, j}=1 / c_{i, j}$
* Probability of ant's transition
$\not \approx \alpha$-impact of pheromones

$$
p_{i, j}=\frac{\tau_{i, j}^{\alpha} p_{i, j}^{\beta}}{\sum \tau_{i, j}^{\alpha} \eta_{i, j}^{\beta}}
$$

\& β - impact of transition cost

A simple TSP example

Iteration 1

How to build next sub-solution?

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Path and Pheromone Evaluation

```
[A,D,C,E,B]
```

$$
L_{1}=300
$$

$$
L_{2}=450
$$

[C,B,E,D,A]

$$
L_{3}=260
$$

$L_{4}=280$

$$
L_{5}=420
$$

$$
\Delta \tau_{i, j}^{k}=\left\{\begin{array}{l}
\frac{Q}{L_{k}} \text { if }(i, j) \in \text { tour } \\
0 \quad \text { otherwise }
\end{array}\right.
$$

$$
\Delta \tau_{A, B}^{t o t a l}=\Delta \tau_{A, B}^{1}+\Delta \tau_{A, B}^{2}+\Delta \tau_{A, B}^{3}+\Delta \tau_{A, B}^{4}+\Delta \tau_{A, B}^{5}
$$

End of First Run

Save Best Tour (Sequence and length)

Do Next Run

Stopping criteria

* Stagnation
* Max iterations

General ACO

* A stochastic construction procedure
* Probabilistically build a solution
* Iteratively adding solution components to partial solutions
- Heuristic information
- Pheromone trail
* Reinforcement Learning reminiscence
* Modify the problem representation at each iteration

General ACO

* Ants work concurrently and independently
* Collective interaction via indirect communication leads to good solutions

Some advantages

* Positive feedback accounts for rapid discovery of
good solutions
* Distributed computation avoids premature convergence
* The greedy heuristic helps find acceptable solution in the early stages of the search process.
* The collective interaction of a population of agents.

Disadvantages in Ant Systems

* Possibly slow convergence
* No centralized processor to guide the AS towards good solutions

Improvements to Ant Systems

* Also apply centralized actions
\approx ACO is a local optimization procedure
\% Improve by biasing the search process with the global information
* Max-Min Ant System
\approx Pheromone values are limited $\tau_{\text {min }} \leq \tau_{i j} \leq \tau_{\text {max }}$
\approx Only the best ant(s) can add pheromones
\approx Sometimes uses local search to improve its performance

Quadratic Assignment Problem(QAP)

NP-hard problem defined as

- Assign n activities to n locations (campus and mall layout).
- $D=\left[d_{i, j}\right]_{n, n}$, where $d_{i, j}$ is the distance from location i to location j
- $F=\left[f_{h, k}\right]_{n, n}$, where $f_{h, k}$ is the flow from activity h to activity k
- Assignment is a permutation π
- Minimize:

$$
C(\pi)=\sum_{i, j=1}^{n} d_{i j} f_{\pi(i) \pi(j)}
$$

QAP Example

How to assign facilities to locations ?

Higher cost

Lower cost

SIMPLIFIED QAP

Simplification Assume all departments have equal size
Notation $\quad d_{i, j}$ distance between locations i and j
$f_{k, h}$ travel frequency between departments k and h
$X_{i, k}\left\{\begin{array}{l}1 \text { if department } \mathrm{k} \text { is assigned to location } \mathrm{i} \\ 0 \text { otherwise }\end{array}\right.$
Example

Location
Department („Facility")
Frequency* $f_{k, h}$

	1	2	3	4
1	.	1	3	2
2	2	.	0	1
3	1	4	.	0
4	3	1	1	.

Ant System (AS-QAP)

Constructive method:

step 1: choose a facility j
step 2: assign it to a location i
Characteristics:

- each ant leaves trace (pheromone) on the chosen couplings (i,j)
- assignment depends on the probability (function of pheromone trail and a heuristic information)
- already coupled locations and facilities are inhibited (e.g.,

Tabu list)

AS-QAP Heuristic information

Distance and Flow Potentials
$D_{i j}=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 0 & 4 & 5 \\ 2 & 4 & 0 & 6 \\ 3 & 5 & 6 & 0\end{array}\right] \Rightarrow D_{i}=\left[\begin{array}{l}6 \\ 10 \\ 12 \\ 14\end{array}\right] \quad F_{i j}=\left[\begin{array}{cccc}0 & 60 & 50 & 10 \\ 60 & 0 & 30 & 20 \\ 50 & 30 & 0 & 50 \\ 10 & 20 & 50 & 0\end{array}\right] \Rightarrow F_{i}=\left[\begin{array}{l}120 \\ 110 \\ 130 \\ 80\end{array}\right]$
The coupling Matrix:

$$
S=\left[\begin{array}{cccc}
720 & 1200 & 1440 & 1680 \\
660 & 1100 & 1320 & 1540 \\
780 & 1300 & 1560 & 1820 \\
480 & 800 & 960 & 1120
\end{array}\right] \quad \begin{aligned}
& \\
& \mathrm{s}_{11}=f_{1} \bullet d_{1}=720 \\
& \mathrm{~s}_{34}=f_{3} \bullet d_{4}=960
\end{aligned}
$$

Ants choose the location according to the heuristic desirability "Potential goodness"

$$
\zeta_{i j}=\frac{1}{s_{i j}}
$$

AS-QAP Constructing the Solution

$>$ The facilities are ranked in decreasing order of the flow potentials
$>$ Ant k assigns the facility i to location j with the probability given by:

$$
p_{i j}^{k}(t)=\left\{\frac{\tau_{i j}(t)^{\alpha} \eta_{i j}^{\beta}}{\sum_{l \in N_{i}^{k}} \tau_{i j}(t)^{\alpha} \eta_{i j}^{\beta}} \quad \text { if } j \in N_{i}^{k}\right.
$$

where N_{i}^{k} is the feasible neighborhood of node i

When ant k chooses to assign facility j to location i, it leaves a trace "pheromone" on the coupling ($(i, j$)
$>$ Repeated until the entire assignment is found

AS-QAP Pheromone Update

> Pheromone trail update to all couplings:

$$
\tau_{i j}(t+1)=\rho \tau_{i j}(t)+\sum_{k=1}^{m} \Delta \tau_{i j}^{k}
$$

$\Delta \tau_{i j}^{k}$ is the amount of pheromone ant k puts on the coupling (i, j)

$$
\begin{gathered}
\Delta_{i j}^{k}=\left\{\begin{array}{lll}
\frac{Q}{J_{\psi}^{k}} & \text { if } \text { facility } \mathrm{i} \text { is assigned to location } \mathrm{j} \text { in the solution of ant } \mathrm{k} \\
& 0 & \text { otherwise }
\end{array}\right. \\
J_{\psi}^{k}
\end{gathered}
$$

Q...the amount of pheromone deposited by ant k

Hybrid Ant System For The QAP

- Constructive algorithms often result in a poor solution quality compared to local search algorithms.
- Repeating local searches from randomly generated initial solution results for most problems in a considerable gap to optimal solution
- Hybrid algorithms combining solution constructed by (artificial) ant "probabilistic constructive" with local search algorithms yield significantly improved solution.

Hybrid Ant System For The QAP (HAS-QAP)

- HAS-QAP uses of the pheromone trails in a nonstandard way. It is used to modify an existing solution
- Improves the ant's solution using the local search algorithm.
- Intensification and diversification mechanisms.

Hybrid Ant System For The QAP (HAS-QAP)

```
Generate m initial solutions, each one associated to one ant
```

 Initialise the pheromone trail
 For Imax iterations repeat
 For each ant \(k=1, \ldots, m\) do
 Modify ant \(k\);s solution using the pheromone trail
 Apply a local search to the modified solution
 new starting solution to ant \(k\) using an intensification mechanism
 End For
 Update the pheromone trail

```
Apply a diversification mechanism
```


HAS-QAP Intensification\& diversification mechanisms

- The intensification mechanism is activated when the best solution produced by the search so far has been improved.
- The diversification mechanism is activated if during the last S iterations no improvement to the best generated solution is detected.

Particle Swarm Optimization (PSO)

- A population based stochastic optimization technique
- Searches for an optimal solution in the computable search space
- Developed in 1995 by Eberhart and Kennedy
- Inspired by social psychology
- Inspiration: swarms of bees, flocks of birds, schools of fish

PSO principles

- In PSO individuals strive to improve themselves and often achieve this by observing and imitating their neighbors
- Each PSO individual has the ability to remember
- PSO has simple algorithms and low overhead
- Making it more popular in some circumstances than Genetic/Evolutionary Algorithms
- Has only one operation calculation:
- Velocity: a vector of numbers that are added to the position coordinates to move an individual

PSO and social psychology

- Individuals (points) tend to
- Move towards each other
- Influence each other
- Why?
- Individuals want to be in agreement with their neighbors
- Individuals (points) are influenced by:
- Their previous actions/behaviors
- The success achieved by their neighbors

What Happens in PSO

- Individuals in a population learn from previous experiences and the experiences of those around them
- The direction of movement is a function of:
- Current position
- Velocity (or in some models, probability)
- Location of individuals "best" success
- Location of neighbors "best" successes
- Therefore, each individual in a population will gradually move towards the "better" areas of the problem space
- Hence, the overall population moves towards "better" areas of the problem space

PSO: Neighborhood

Particle Swarm Optimization (PSO)

* One can imagine that each particle is represented with two vectors, location and velocity
$\%$ Location $x=\left(x_{11}, x_{21} \ldots\right)$
\because Velocity $v=\left(v_{11}, v_{21}, \ldots\right)$
$\%$ For locations $x(t-1)$ and $x(t)$ in time $t-1$ and t :

$$
\vec{v}=\vec{x}(t)-\vec{x}(t-1)
$$

* Initialization of locations and velocities (small initial values, e.g., one half of distance to the neighboring particle, random, or o)

Information exchange in the swarm

\&Historically best location x^{*}
$\%$ Best location of informants x^{+}
\%Globally best location x !

Moving particles

* In each time step, the following operations are executed

1. compute the fitness of each particle and update x^{*}, x^{+} in x !
2. update the representation of particle
\because velocity vector takes into account updated directions x^{*}, x^{+} in x !
\because each direction is updated with some random noise
3. move the particle in the direction of velocity vector

Computing new position

PSO - parameters

* α - proportion of current velocity vector v
* β - proportion of the best value of location x * too large value pushes towards its maximum and we get a swarm of greedy searchers and no group dynamics
* δ - proportion of the best global location x ! too large value pushes particles towards the current global maximum and we get a single greedy search, instead of several local searches (often we set this parameter to o)
* γ - proportion of the best value of informants x^{+}
the effect between β and δ, depends also on the number of informants: more informants emphasize global, less informants emphasize effect of local information
* ε - speed of particle movement too large speed may cause too fast convergence without enough search (default value is 1)
* swarmsize - size of swarm (between 20 and 50)

PSO pseudocode

```
P = []
for (i=0 ; i < swarmsize ; i++)
    P
best = null
do {
    for (i=0 ; i < swarmsize ; i++) {
        compute fitness( ( }\mp@subsup{\textrm{i}}{\textrm{i}}{(}
        if ( fitness(P ( ) > fitness(best) )
            best = P P
    }
    for (i=0 ; i < swarmsize ; i++) {
        x* = update location of the best fitness of }\mp@subsup{x}{i}{
        x+ = update location of the best fitness of informants of }\mp@subsup{x}{i}{
        x! = update location of the best fitness of all particles
        for (j=0; j < #dimensions; j++) {
            b = random between 0 and \beta
            c = random between 0 and }
            d = random between 0 and }
            vj}=\alpha\mp@subsup{v}{j}{}+b(\mp@subsup{x}{}{*}\mp@subsup{}{j}{}-\mp@subsup{x}{j}{})+c(\mp@subsup{x}{}{+}\mp@subsup{}{j}{}-\mp@subsup{x}{j}{})+d(\mp@subsup{x}{}{\prime}\mp@subsup{}{j}{}-\mp@subsup{x}{j}{}
        }
        x
} while (!satisfied with best or out of time)
return best
```


simulation.

fitness

simulation

fitness

simulation

fitness

simulation

fitness

simulation ${ }_{5}$

fitness

simulation.

fitness

simulation,

fitness

simulation.

fitness

PSO characteristics

* Advantages

\% Insensitive to scaling of design variables
\% Simple implementation
\approx Easily parallelized for concurrent processing
\% Derivative free
\& Very few algorithm parameters

* Very efficient global search algorithm
* Disadvantages
\% Tendency to a fast and premature convergence in mid optimum points
\& Slow convergence in refined search stage (weak local search ability)

