
Machine learning for
combinatorial optimization

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja
Analysis of Algorithms and Heuristic Problem Solving
Version 2023

Supervised Learning

Supervised Learning

System
Inputs Outputs

Training Info = desired (target) outputs

Error = (target output – actual output)

Basic notation of predictive modelling

• We have data and the variable of interest

• The statistical variable of interest is called response or target or prediction variable that we wish to
predict. We usually refer to the response as Y .

• Other variables are called attributes, features, inputs, or predictors; we name them Xi.

• The input vectors forms a matrix X

• The model we write as

where ∈ is independent from X, has zero mean and represents measurement errors and other
discrepancies.

3

Further notation for instances

• Suppose we observe 𝑌𝑖 and for

• We believe that there is a relationship between Y and at least one of the
X’s.

• We can model the relationship as

• Where f is an unknown function and ε is a random error with mean zero.

4

iii fY +=)(.X

),...,(1 ipii XXX = i =1,...,n

A simple example

5

0.0 0.2 0.4 0.6 0.8 1.0

-0
.1

0
-0

.0
5

0
.0

0
0

.0
5

0
.1

0

x

y

A simple example

6

0.0 0.2 0.4 0.6 0.8 1.0

-0
.1

0
-0

.0
5

0
.0

0
0

.0
5

0
.1

0

x

y

εi

f

Reinforcement Learning

RL

System
Inputs Outputs (“actions”)

Training Info = evaluations (“rewards” / “penalties”)

Objective: get as much reward as possible

The RL Agent-Environment Interface

8

Agent and environment interact at discrete time steps : t = 0,1, 2,

 Agent observes state at step t : st S

 produces action at step t : at A(st)

 gets resulting reward : rt +1

 and resulting next state : st +1

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a

The Agent Learns a Policy

• Reinforcement learning methods specify how the agent changes its
policy as a result of experience.

• Roughly, the agent’s goal is to get as much reward as it can over the
long run.

9

Policy at step t, t :

 a mapping from states to action probabilities

 t (s, a) = probability that at = a when st = s

An Example: Tic-Tac-Toe

X XXO O

X

XO

X

O

XO

X

O

X

XO

X

O

X O

XO

X

O

X O

X

} x’s move

} x’s move

} o’s move

} x’s move

} o’s move

...

...... ...

...

x x

x

x o

x

o

xo

x

x

x
x

o

o

Assume an imperfect opponent:

—he/she sometimes makes mistakes

An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

2. Now play lots of games.

To pick our moves,

look ahead one step:

State V(s) – estimated probability of winning

.5 ?

.5 ?

1 win

0 loss

0 draw

x

xxx

o
o

o
o

o
x

x

oo

o o
x

x
x

x
o

current state

various possible

next states*
Just pick the next state with the highest

estimated prob. of winning — the largest V(s);

a greedy move.

But 10% of the time pick a move at random;

an exploratory move.

RL Learning Rule for Tic-Tac-Toe

“Exploratory” move

s – the state before our greedy move

 s – the state after our greedy move

We increment each V(s) toward V(s) – a backup :

V(s) V (s) + V(s) − V (s)

a small positive fraction, e.g., = .1

the step - size parameter

•

Our Move {
Opponent's Move {

Our Move {

Starting Position

•

•

•

a

b

c

d

ee'

Opponent's Move {

•
f

•g

Opponent's Move {
Our Move {

•

c *

*

*g

Standard approach of ML for CO

• Collect data from different runs

• Predict the quality of next move or predict the quality of the final
solution

13

TSP with ML

14

TSP with the recurrent network

15

Representing graphs with embeddings

• Embeddings are more practical than the adjacency matrix since they pack
node properties in a vector with a smaller dimension.

• Embeddings shall describe the properties of the graphs. They need to
represent the graph topology, node connections, and node neighborhood.
The performance of prediction depends on the quality of embeddings.

• The embedding computation shall be fastprocess.
Graphs are usually large. Imagine the social networks with millions of
people. A good embedding approach needs to be efficient on large graphs.

• The size of embedding has to be appropriate
Longer embeddings preserve more information while they induce higher
time and space complexity than sorter embeddings. Typical embedding size
is between 128 and 256.

• A simple node embedding example is Personal PageRank

• A more advanced ML-based technique is DeepWalk

• Many algorithms to represent nodes and edges

16

PageRank for ranking documents

17

PageRank formalization

• p = web page

• O(p) = pages pointed to by p

• I(p) = {i1, i2, ..., in} pages pointing to p

• d = damping factor between 0 and 1 (default 0.85 or 0.9)

• Page quality (p) depends on quality of pages pointing to it

)(

)(

)(

)(

1

1)1()(
n

n

iO

i

iO

i
dddp

 +++−=

18

PageRank computation

• Iterative computation,

• matrix form

• random surfer, intentional surfer

• Personal PageRank produces node embeddings

19

Deep Walk

• Based on word2vec text embedding

20

Word2vec predicts neighbouring words

21

word2vec (skip-gram) training data

 Training sentence:

 ... lemon, a tablespoon of apricot jam a pinch ...

 c1 c2 target c3 c4

• Asssume context words are those in +/- 2 word window

• Get negative training examples randomly

• train a neural network to predict probability of a co-occurring word
22

Neural network based word2vec embedding

23

DeepWalk

 DeepWalk uses random walks to produce embeddings. The random walk
starts in a selected node then we move to the random neighbor from a
current node for a defined number of steps.

 The method consists of three steps:

 Sampling: A graph is sampled with random walks. Few random walks from each node
are performed. Usually it is sufficient to perform from 32 to 64 random walks from each
node, and each walk has a length of about 40 steps.

 Training skip-gram: Random walks are comparable to sentences in word2vec
approach. The skip-gram network accepts a node from the random walk as a one-
hot vector as an input and maximizes the probability for predicting neighbor nodes. It
is typically trained to predict around 20 neighbor nodes — 10 nodes left and 10 nodes
right.

 Computing embeddings: Embedding is the output of a hidden layer of the network.
The DeepWalk computes embedding for each node in the graph.

24

