Analysis of Algorithms and Heuristic Problem Solving, 2021/22, 01 September 2022
All questions count equally. Literature, electronic and communication devices are not allowed. It is allowed to use 1 sheet of A4 format paper. You can write your answers in either English or Slovene. Duration: 90 minutes.
Students who wish to look into the written exam results can do so on Friday, 02 September 2022, at 12:00 in the room of Prof Robnik Šikonja (2 ${ }^{\text {nd }}$ floor, room 2.06).

1. Find the solution to the recurrence

$$
T(n)=2 T\left(\frac{n}{15}\right)+T\left(\frac{n}{10}\right)+2 T\left(\frac{n}{6}\right)+\sqrt{n}
$$

2. Consider the following randomized algorithm for computing the smallest element in an array which is randomly shuffled.
```
RandomMin(A[1 .. n]) \{
    \(\min \leftarrow \infty\)
    for \(\mathrm{i} \leftarrow 1\) to n
            if \(A[i]<m i n\)
                \(\min \leftarrow A[i] \quad / / \star\)
    return min ;
\}
```

a) In the worst case, how many times does RandomMin execute line marked with \star ?
b) What is the probability that line marked with \star is executed during the $\mathrm{n}^{\text {th }}$ iteration of the for loop?
c) What is the exact expected number of executions of line marked with *?
3. Describe the similarities and differences between the fireworks algorithm and firefly algorithm in optimization. In which way they both implement the intensification strategy? Justify your answer.
4. You are given a task to solve the facility assignment problem defined as follows. There is a set U of users (defined with locations) that need access to a service, and a set of possible server locations S. For each site $s \in S$, there is a fee $f_{s} \geq 0$ for placing a server at that location. Users $u \in U$ can be served from multiple sites, with associated cost $c_{u s}$ for serving user u from site s. If cost $c_{u s}$ is high, we will avoid serving user u from site s; in this way we can promote serving users from nearby sites.
For sets U and S, and cost functions f and c, you have to select a subset $A \subseteq S$ at which to place servers and assign each user to the active server where it is cheapest to be served. i.e. you have to minimize the overall cost $\sum_{s \in A} f_{s}+\sum_{u \in U} \min _{s \in A} c_{u s}$.
Propose features to be used in solving the problem with the guided local search.

