Figure 12.2 Principal component analysis seeks a space

Section 12.2

Section 12.4

12.1.

12.1. Principal Component Analysis 561

u
of lower dimensionality, known as the princi-

pal subspace and denoted by the magenta Z2 /
line, such that the orthogonal projection of X, \
(green dots). An alternative definition of PCA /

the data points (red dots) onto this subspace \
is based on minimizing the sum-of-squares Xn
of the projection errors, indicated by the blue

.\ o

maximizes the variance of the projected points
lines.

>
>

Ty

a particular form of linear-Gaussian latent variable model. This probabilistic refor-
mulation brings many advantages, such as the use of EM for parameter estimation,
principled extensions to mixtures of PCA models, and Bayesian formulations that
allow the number of principal components to be determined automatically from the
data. Finally, we discuss briefly several generalizations of the latent variable concept
that go beyond the linear-Gaussian assumption including non-Gaussian latent vari-
ables, which leads to the framework of independent component analysis, as well as
models having a nonlinear relationship between latent and observed variables.

Principal Component Analysis

Principal component analysis, or PCA, is a technique that is widely used for appli-
cations such as dimensionality reduction, lossy data compression, feature extraction,
and data visualization (Jolliffe, 2002). It is also known as the Karhunen-Loéve trans-
form.

There are two commonly used definitions of PCA that give rise to the same
algorithm. PCA can be defined as the orthogonal projection of the data onto a lower
dimensional linear space, known as the principal subspace, such that the variance of
the projected data is maximized (Hotelling, 1933). Equivalently, it can be defined as
the linear projection that minimizes the average projection cost, defined as the mean
squared distance between the data points and their projections (Pearson, 1901). The
process of orthogonal projection is illustrated in Figure 12.2. We consider each of
these definitions in turn.

12.1.1 Maximum variance formulation

Consider a data set of observations {x,,} where n = 1,..., N, and x,, is a
Euclidean variable with dimensionality IJ. Our goal is to project the data onto a
space having dimensionality M/ < D while maximizing the variance of the projected
data. For the moment, we shall assume that the value of M is given. Later in this
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chapter, we shall consider techniques to determine an appropriate value of M from
the data.

To begin with, consider the projection onto a one-dimensional space (M = 1).
We can define the direction of this space using a D-dimensional vector u;, which
for convenience (and without loss of generality) we shall choose to be a unit vector
so that uTu; = 1 (note that we are only interested in the direction defined by uy,
not in the magnitude of u; itself). Each data point x,, is then projected onto a scalar
value ui x,,. The mean of the projected data is uj X where X is the sample set mean

given by

1 N
X= Z X, (12.1)
n=1

and the variance of the projected data is given by
1
< > {ulx, —ufx}" = ulSy, (12.2)
n=1
where S is the data covariance matrix defined by
1
S=—) (x, —%X)(x, —%)". (12.3)

We now maximize the projected variance u Su; with respect to u;. Clearly, this has
to be a constrained maximization to prevent ||u; || — oo. The appropriate constraint
comes from the normalization condition ulTul = 1. To enforce this constraint,
we introduce a Lagrange multiplier that we shall denote by A, and then make an
unconstrained maximization of

ui Su; + Ay (1 —ujuy). (12.4)

By setting the derivative with respect to u; equal to zero, we see that this quantity
will have a stationary point when

Su1 = )\1111 (125)

which says that u; must be an eigenvector of S. If we left-multiply by u; and make
use of ulu; = 1, we see that the variance is given by

u; Su; = )\ (12.6)

and so the variance will be a maximum when we set u; equal to the eigenvector
having the largest eigenvalue \;. This eigenvector is known as the first principal
component.

We can define additional principal components in an incremental fashion by
choosing each new direction to be that which maximizes the projected variance
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amongst all possible directions orthogonal to those already considered. If we con-
sider the general case of an M -dimensional projection space, the optimal linear pro-
jection for which the variance of the projected data is maximized is now defined by
the M eigenvectors uy, . .., uys of the data covariance matrix S corresponding to the
M largest eigenvalues \q, ..., Ays. This is easily shown using proof by induction.

To summarize, principal component analysis involves evaluating the mean X
and the covariance matrix S of the data set and then finding the M eigenvectors of S
corresponding to the M largest eigenvalues. Algorithms for finding eigenvectors and
eigenvalues, as well as additional theorems related to eigenvector decomposition,
can be found in Golub and Van Loan (1996). Note that the computational cost of
computing the full eigenvector decomposition for a matrix of size D x D is O(D?).
If we plan to project our data onto the first M principal components, then we only
need to find the first M eigenvalues and eigenvectors. This can be done with more
efficient techniques, such as the power method (Golub and Van Loan, 1996), that
scale like O(M D?), or alternatively we can make use of the EM algorithm.

12.1.2 Minimum-error formulation

We now discuss an alternative formulation of PCA based on projection error
minimization. To do this, we introduce a complete orthonormal set of D-dimensional
basis vectors {u;} where i = 1,..., D that satisfy

u/u; = 4. (12.7)

Because this basis is complete, each data point can be represented exactly by a linear
combination of the basis vectors

D
Xp = Zamui (128)
=1

where the coefficients «,,; will be different for different data points. This simply
corresponds to a rotation of the coordinate system to a new system defined by the
{u;}, and the original D components {x,1,...,x,p} are replaced by an equivalent
set {ap1,...,,p}. Taking the inner product with u;, and making use of the or-
thonormality property, we obtain a,; = X, u;, and so without loss of generality we

can write
D

Xy = Z (xpu;) u;. (12.9)
i=1
Our goal, however, is to approximate this data point using a representation in-
volving a restricted number M < D of variables corresponding to a projection onto
a lower-dimensional subspace. The M-dimensional linear subspace can be repre-
sented, without loss of generality, by the first M of the basis vectors, and so we
approximate each data point x,, by

M D
=1 i=M+1
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where the {z,;} depend on the particular data point, whereas the {b;} are constants
that are the same for all data points. We are free to choose the {u;}, the {z,;}, and
the {b;} so as to minimize the distortion introduced by the reduction in dimensional-
ity. As our distortion measure, we shall use the squared distance between the original
data point x,, and its approximation X,,, averaged over the data set, so that our goal
is to minimize

1 N
= 5 2 lxa = %l (2.1
n=1

Consider first of all the minimization with respect to the quantities {z,;}. Sub-
stituting for X,,, setting the derivative with respect to z,,; to zero, and making use of
the orthonormality conditions, we obtain

Znj = Xp Uy (12.12)

where j = 1,..., M. Similarly, setting the derivative of J with respect to b; to zero,
and again making use of the orthonormality relations, gives

bj =X u; (12.13)

where j = M +1, ..., D. If we substitute for z,; and b;, and make use of the general
expansion (12.9), we obtain

~ X, = Z {(x0 — %)} uy (12.14)

i=M-4+1

from which we see that the displacement vector from x,, to X,, lies in the space
orthogonal to the principal subspace, because it is a linear combination of {u;} for
1 =M+1,...,D, as illustrated in Figure 12.2. This is to be expected because the
projected points X,, must lie within the principal subspace, but we can move them
freely within that subspace, and so the minimum error is given by the orthogonal
projection.

We therefore obtain an expression for the distortion measure J as a function
purely of the {u;} in the form

[ ND D
J = ~ Z Z (xzui — iTui)2 = Z u;fSui. (12.15)
n=1i=M+1 i=M+1

There remains the task of minimizing J with respect to the {u;}, which must
be a constrained minimization otherwise we will obtain the vacuous result u; = 0.
The constraints arise from the orthonormality conditions and, as we shall see, the
solution will be expressed in terms of the eigenvector expansion of the covariance
matrix. Before considering a formal solution, let us try to obtain some intuition about
the result by considering the case of a two-dimensional data space D = 2 and a one-
dimensional principal subspace M = 1. We have to choose a direction us so as to
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minimize J = uj Suy, subject to the normalization constraint uj u; = 1. Using a
Lagrange multiplier A\ to enforce the constraint, we consider the minimization of

J=ujSu; + Xy (1 - ujuy). (12.16)

Setting the derivative with respect to u, to zero, we obtain Su, = Ayuy so that u,
is an eigenvector of S with eigenvalue \o. Thus any eigenvector will define a sta-
tionary point of the distortion measure. To find the value of J at the minimum, we
back-substitute the solution for u, into the distortion measure to give J = \,. We
therefore obtain the minimum value of .J by choosing u; to be the eigenvector corre-
sponding to the smaller of the two eigenvalues. Thus we should choose the principal
subspace to be aligned with the eigenvector having the larger eigenvalue. This result
accords with our intuition that, in order to minimize the average squared projection
distance, we should choose the principal component subspace to pass through the
mean of the data points and to be aligned with the directions of maximum variance.
For the case when the eigenvalues are equal, any choice of principal direction will
give rise to the same value of .J.

The general solution to the minimization of .J for arbitrary D and arbitrary M <
D is obtained by choosing the {u;} to be eigenvectors of the covariance matrix given
by

Su; = \ju; (12.17)
where ¢ = 1,..., D, and as usual the eigenvectors {u;} are chosen to be orthonor-
mal. The corresponding value of the distortion measure is then given by

D
J= >\ (12.18)
i=M+1

which is simply the sum of the eigenvalues of those eigenvectors that are orthogonal
to the principal subspace. We therefore obtain the minimum value of J by selecting
these eigenvectors to be those having the D — M smallest eigenvalues, and hence
the eigenvectors defining the principal subspace are those corresponding to the M
largest eigenvalues.

Although we have considered M < D, the PCA analysis still holds if M =
D, in which case there is no dimensionality reduction but simply a rotation of the
coordinate axes to align with principal components.

Finally, it is worth noting that there exists a closely related linear dimensionality
reduction technique called canonical correlation analysis, or CCA (Hotelling, 1936;
Bach and Jordan, 2002). Whereas PCA works with a single random variable, CCA
considers two (or more) variables and tries to find a corresponding pair of linear
subspaces that have high cross-correlation, so that each component within one of the
subspaces is correlated with a single component from the other subspace. Its solution
can be expressed in terms of a generalized eigenvector problem.

12.1.3 Applications of PCA

We can illustrate the use of PCA for data compression by considering the off-
line digits data set. Because each eigenvector of the covariance matrix is a vector
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Figure 12.3 The mean vector x along with the first four PCA eigenvectors u, ..., us for the off-line

digits data set, together with the corresponding eigenvalues.

in the original D-dimensional space, we can represent the eigenvectors as images of
the same size as the data points. The first five eigenvectors, along with the corre-
sponding eigenvalues, are shown in Figure 12.3. A plot of the complete spectrum of
eigenvalues, sorted into decreasing order, is shown in Figure 12.4(a). The distortion
measure J associated with choosing a particular value of M is given by the sum
of the eigenvalues from M + 1 up to D and is plotted for different values of M in
Figure 12.4(b).

If we substitute (12.12) and (12.13) into (12.10), we can write the PCA approx-
imation to a data vector X,, in the form

M D
5(/” = Z(xgui)ui—i— Z (iTui)ui (1219)
i=1 i=M+1
M
— §+Z(x2ui—iTui) u; (12.20)
=1
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Figure 12.4 (a) Plot of the eigenvalue spectrum for the off-line digits data set. (b) Plot of the sum of the
discarded eigenvalues, which represents the sum-of-squares distortion J introduced by projecting the data onto
a principal component subspace of dimensionality M.



