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Figure 12.2 Principal component analysis seeks a space
of lower dimensionality, known as the princi-
pal subspace and denoted by the magenta
line, such that the orthogonal projection of
the data points (red dots) onto this subspace
maximizes the variance of the projected points
(green dots). An alternative definition of PCA
is based on minimizing the sum-of-squares
of the projection errors, indicated by the blue
lines.
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a particular form of linear-Gaussian latent variable model. This probabilistic refor-Section 12.2
mulation brings many advantages, such as the use of EM for parameter estimation,
principled extensions to mixtures of PCA models, and Bayesian formulations that
allow the number of principal components to be determined automatically from the
data. Finally, we discuss briefly several generalizations of the latent variable concept
that go beyond the linear-Gaussian assumption including non-Gaussian latent vari-
ables, which leads to the framework of independent component analysis, as well as
models having a nonlinear relationship between latent and observed variables.Section 12.4

12.1. Principal Component Analysis

Principal component analysis, or PCA, is a technique that is widely used for appli-
cations such as dimensionality reduction, lossy data compression, feature extraction,
and data visualization (Jolliffe, 2002). It is also known as the Karhunen-Loève trans-
form.

There are two commonly used definitions of PCA that give rise to the same
algorithm. PCA can be defined as the orthogonal projection of the data onto a lower
dimensional linear space, known as the principal subspace, such that the variance of
the projected data is maximized (Hotelling, 1933). Equivalently, it can be defined as
the linear projection that minimizes the average projection cost, defined as the mean
squared distance between the data points and their projections (Pearson, 1901). The
process of orthogonal projection is illustrated in Figure 12.2. We consider each of
these definitions in turn.

12.1.1 Maximum variance formulation
Consider a data set of observations {xn} where n = 1, . . . , N , and xn is a

Euclidean variable with dimensionality D. Our goal is to project the data onto a
space having dimensionality M < D while maximizing the variance of the projected
data. For the moment, we shall assume that the value of M is given. Later in this
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chapter, we shall consider techniques to determine an appropriate value of M from
the data.

To begin with, consider the projection onto a one-dimensional space (M = 1).
We can define the direction of this space using a D-dimensional vector u1, which
for convenience (and without loss of generality) we shall choose to be a unit vector
so that uT

1 u1 = 1 (note that we are only interested in the direction defined by u1,
not in the magnitude of u1 itself). Each data point xn is then projected onto a scalar
value uT

1 xn. The mean of the projected data is uT
1 x where x is the sample set mean

given by

x =
1
N

N∑

n=1

xn (12.1)

and the variance of the projected data is given by

1
N

N∑

n=1

{
uT

1 xn − uT
1 x

}2 = uT
1 Su1 (12.2)

where S is the data covariance matrix defined by

S =
1
N

N∑

n=1

(xn − x)(xn − x)T. (12.3)

We now maximize the projected variance uT
1 Su1 with respect to u1. Clearly, this has

to be a constrained maximization to prevent ∥u1∥ → ∞. The appropriate constraint
comes from the normalization condition uT

1 u1 = 1. To enforce this constraint,
we introduce a Lagrange multiplier that we shall denote by λ1, and then make anAppendix E
unconstrained maximization of

uT
1 Su1 + λ1

(
1 − uT

1 u1

)
. (12.4)

By setting the derivative with respect to u1 equal to zero, we see that this quantity
will have a stationary point when

Su1 = λ1u1 (12.5)

which says that u1 must be an eigenvector of S. If we left-multiply by uT
1 and make

use of uT
1 u1 = 1, we see that the variance is given by

uT
1 Su1 = λ1 (12.6)

and so the variance will be a maximum when we set u1 equal to the eigenvector
having the largest eigenvalue λ1. This eigenvector is known as the first principal
component.

We can define additional principal components in an incremental fashion by
choosing each new direction to be that which maximizes the projected variance
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amongst all possible directions orthogonal to those already considered. If we con-
sider the general case of an M -dimensional projection space, the optimal linear pro-
jection for which the variance of the projected data is maximized is now defined by
the M eigenvectors u1, . . . ,uM of the data covariance matrix S corresponding to the
M largest eigenvalues λ1, . . . , λM . This is easily shown using proof by induction.Exercise 12.1

To summarize, principal component analysis involves evaluating the mean x
and the covariance matrix S of the data set and then finding the M eigenvectors of S
corresponding to the M largest eigenvalues. Algorithms for finding eigenvectors and
eigenvalues, as well as additional theorems related to eigenvector decomposition,
can be found in Golub and Van Loan (1996). Note that the computational cost of
computing the full eigenvector decomposition for a matrix of size D ×D is O(D3).
If we plan to project our data onto the first M principal components, then we only
need to find the first M eigenvalues and eigenvectors. This can be done with more
efficient techniques, such as the power method (Golub and Van Loan, 1996), that
scale like O(MD2), or alternatively we can make use of the EM algorithm.Section 12.2.2

12.1.2 Minimum-error formulation
We now discuss an alternative formulation of PCA based on projection error

minimization. To do this, we introduce a complete orthonormal set of D-dimensionalAppendix C
basis vectors {ui} where i = 1, . . . , D that satisfy

uT
i uj = δij . (12.7)

Because this basis is complete, each data point can be represented exactly by a linear
combination of the basis vectors

xn =
D∑

i=1

αniui (12.8)

where the coefficients αni will be different for different data points. This simply
corresponds to a rotation of the coordinate system to a new system defined by the
{ui}, and the original D components {xn1, . . . , xnD} are replaced by an equivalent
set {αn1, . . . , αnD}. Taking the inner product with uj , and making use of the or-
thonormality property, we obtain αnj = xT

nuj , and so without loss of generality we
can write

xn =
D∑

i=1

(
xT

nui

)
ui. (12.9)

Our goal, however, is to approximate this data point using a representation in-
volving a restricted number M < D of variables corresponding to a projection onto
a lower-dimensional subspace. The M -dimensional linear subspace can be repre-
sented, without loss of generality, by the first M of the basis vectors, and so we
approximate each data point xn by

x̃n =
M∑

i=1

zniui +
D∑

i=M+1

biui (12.10)
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where the {zni} depend on the particular data point, whereas the {bi} are constants
that are the same for all data points. We are free to choose the {ui}, the {zni}, and
the {bi} so as to minimize the distortion introduced by the reduction in dimensional-
ity. As our distortion measure, we shall use the squared distance between the original
data point xn and its approximation x̃n, averaged over the data set, so that our goal
is to minimize

J =
1
N

N∑

n=1

∥xn − x̃n∥2. (12.11)

Consider first of all the minimization with respect to the quantities {zni}. Sub-
stituting for x̃n, setting the derivative with respect to znj to zero, and making use of
the orthonormality conditions, we obtain

znj = xT
nuj (12.12)

where j = 1, . . . , M . Similarly, setting the derivative of J with respect to bi to zero,
and again making use of the orthonormality relations, gives

bj = xTuj (12.13)

where j = M +1, . . . , D. If we substitute for zni and bi, and make use of the general
expansion (12.9), we obtain

xn − x̃n =
D∑

i=M+1

{
(xn − x)Tui

}
ui (12.14)

from which we see that the displacement vector from xn to x̃n lies in the space
orthogonal to the principal subspace, because it is a linear combination of {ui} for
i = M + 1, . . . , D, as illustrated in Figure 12.2. This is to be expected because the
projected points x̃n must lie within the principal subspace, but we can move them
freely within that subspace, and so the minimum error is given by the orthogonal
projection.

We therefore obtain an expression for the distortion measure J as a function
purely of the {ui} in the form

J =
1
N

N∑

n=1

D∑

i=M+1

(
xT

nui − xTui

)2 =
D∑

i=M+1

uT
i Sui. (12.15)

There remains the task of minimizing J with respect to the {ui}, which must
be a constrained minimization otherwise we will obtain the vacuous result ui = 0.
The constraints arise from the orthonormality conditions and, as we shall see, the
solution will be expressed in terms of the eigenvector expansion of the covariance
matrix. Before considering a formal solution, let us try to obtain some intuition about
the result by considering the case of a two-dimensional data space D = 2 and a one-
dimensional principal subspace M = 1. We have to choose a direction u2 so as to
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minimize J = uT
2 Su2, subject to the normalization constraint uT

2 u2 = 1. Using a
Lagrange multiplier λ2 to enforce the constraint, we consider the minimization of

J̃ = uT
2 Su2 + λ2

(
1 − uT

2 u2

)
. (12.16)

Setting the derivative with respect to u2 to zero, we obtain Su2 = λ2u2 so that u2

is an eigenvector of S with eigenvalue λ2. Thus any eigenvector will define a sta-
tionary point of the distortion measure. To find the value of J at the minimum, we
back-substitute the solution for u2 into the distortion measure to give J = λ2. We
therefore obtain the minimum value of J by choosing u2 to be the eigenvector corre-
sponding to the smaller of the two eigenvalues. Thus we should choose the principal
subspace to be aligned with the eigenvector having the larger eigenvalue. This result
accords with our intuition that, in order to minimize the average squared projection
distance, we should choose the principal component subspace to pass through the
mean of the data points and to be aligned with the directions of maximum variance.
For the case when the eigenvalues are equal, any choice of principal direction will
give rise to the same value of J .

The general solution to the minimization of J for arbitrary D and arbitrary M <Exercise 12.2
D is obtained by choosing the {ui} to be eigenvectors of the covariance matrix given
by

Sui = λiui (12.17)

where i = 1, . . . , D, and as usual the eigenvectors {ui} are chosen to be orthonor-
mal. The corresponding value of the distortion measure is then given by

J =
D∑

i=M+1

λi (12.18)

which is simply the sum of the eigenvalues of those eigenvectors that are orthogonal
to the principal subspace. We therefore obtain the minimum value of J by selecting
these eigenvectors to be those having the D − M smallest eigenvalues, and hence
the eigenvectors defining the principal subspace are those corresponding to the M
largest eigenvalues.

Although we have considered M < D, the PCA analysis still holds if M =
D, in which case there is no dimensionality reduction but simply a rotation of the
coordinate axes to align with principal components.

Finally, it is worth noting that there exists a closely related linear dimensionality
reduction technique called canonical correlation analysis, or CCA (Hotelling, 1936;
Bach and Jordan, 2002). Whereas PCA works with a single random variable, CCA
considers two (or more) variables and tries to find a corresponding pair of linear
subspaces that have high cross-correlation, so that each component within one of the
subspaces is correlated with a single component from the other subspace. Its solution
can be expressed in terms of a generalized eigenvector problem.

12.1.3 Applications of PCA
We can illustrate the use of PCA for data compression by considering the off-

line digits data set. Because each eigenvector of the covariance matrix is a vectorAppendix A
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Mean λ1 = 3.4 · 105 λ2 = 2.8 · 105 λ3 = 2.4 · 105 λ4 = 1.6 · 105

Figure 12.3 The mean vector x along with the first four PCA eigenvectors u1, . . . ,u4 for the off-line
digits data set, together with the corresponding eigenvalues.

in the original D-dimensional space, we can represent the eigenvectors as images of
the same size as the data points. The first five eigenvectors, along with the corre-
sponding eigenvalues, are shown in Figure 12.3. A plot of the complete spectrum of
eigenvalues, sorted into decreasing order, is shown in Figure 12.4(a). The distortion
measure J associated with choosing a particular value of M is given by the sum
of the eigenvalues from M + 1 up to D and is plotted for different values of M in
Figure 12.4(b).

If we substitute (12.12) and (12.13) into (12.10), we can write the PCA approx-
imation to a data vector xn in the form

x̃n =
M∑

i=1

(xT
nui)ui +

D∑

i=M+1

(xTui)ui (12.19)

= x +
M∑

i=1

(
xT

nui − xTui

)
ui (12.20)
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Figure 12.4 (a) Plot of the eigenvalue spectrum for the off-line digits data set. (b) Plot of the sum of the
discarded eigenvalues, which represents the sum-of-squares distortion J introduced by projecting the data onto
a principal component subspace of dimensionality M .


