System software

Loader

Loader

Loader (nalagalnik)

- Program which from a storage device (disk) loads another program into the main memory on a given address and starts its execution.
- bootloader (zagonski nalagalnik)
- Chain loading (verižno nalaganje)
 - loader loads a loader which loads a loader etc.
 - Who loads the first loader?

- An overview of steps
 - motherboard
 - processor
 - BIOS / UEFI
 - boot device
 - boot sector (first sector of boot device)
 - first-stage loader
 - second-stage loader
 - etc.

- Motherboard
 - pressing the power button
 - power supply
 - an electronic circuit on the motherboard
 - signal to the processor via the RESET pin

- Processor: 8086, 8088, 80186
 - unusual segmented memory scheme
 - address = segment * 16 + offset
 - segment registers
 - CS (code segment)
 - used together with IP (instruction pointer = program counter)
 - jump instructions
 - DS (data segment)
 - used for data access
 - load and store instructions
 - SS (stack segment)
 - used together with SP (stack pointer)
 - stack instructions

- Processor: 8086, 8088, 80186
 - 20 bit addressing (1 MB of memory)
 - no memory protection
 - 16 bit registers (data and addresses)
 - max_address = 0xFFFF * 0x10 + 0xFFFF = 0x10FFEF
 - 1 MB + 64 kB 16 B = 1114096 B
 - almost 64 kB more than 1 MB
 - addressing modulo 1 MB
 - wrap around for addresses higher than 1 MB
 - 21st address line (A20) was simply ignored (not present)

Boostraping a PC The 8086 memory-map

Vaje SPO, © JM

• Processor: 80286

- 24 bits addresses, 16 MB
 - high memory area
 - no more wrap around, compatibility problems
 - 64 kB 16 B of memory over 1 MB
 - A20 gate
 - a circuit on the motherboard placed between CPU and motherboard to force the 21st address line to zero
 - originally enabled or disabled programatically through keyboard controller
- protected mode
 - but hard to use, so modern OSes were not developed
 - address = descriptors[segment] + offset

0xFI

- Processor: 80386 (i386, IA-32)
 - 32 bit data and addresses, 4 GB
 - real mode
 - compatibility with 80186 are previous
 - protected mode
 - "easy" to use modern features
 - virtual memory, memory protection
 - virtual 80186 mode
 - run real mode applications in protected mode

FFFFFF	High BIOS (2 MB)	4 GB
	~1 GB for PCI space, APIC space, DMI interface, etc.	3.68
	Accessible RAM Memory (nearly 3GB, not to scale)	3.00
JXFFFFF	System BIOS	1MB
	Extended System BIOS	806 KB
	Expansion Area (maps ROMs for old peripheral cards)	768 KB
	Memory Access	640 KB
1	Accessible RAM Memory (640KB is enough for anyone - old DOS area)	
0		0

- Processor: x86 family
 - resets and initializes
 - signal on the RESET pin
 - goes into the real mode
 - 1 MB of memory
 - reset vector (initial value of PC)
 - CS:IP = 0xFFFF:0x0000 = 0xFFFF0 ... before 80286
 - this address containes JMP instruction (to BIOS routine)
 - 80286, 80386 and above initialize CS:IP a bit differently, but in real mode they start at the same 0xFFFF0 address

- BIOS basic input/output system
 - executes POST power-on self test
 - detection, initalization and diagnostics of devices:
 - memory, buses, video, disks, etc.
 - proceeds to the next stage
 - finds a boot device
 - reads its first (boot) sector (512 bytes) to the main memory at 0x07C00
 - executes the code (sector) by jumping to the address 0x07C00

- Boot sector
 - the first sector of the boot device
 - devices without partitioning
 - floppy disks

Heads, 8 Heads, 4 Platters

- the first sector is called VBR volume boot record
- devices with partitions (partition table)
 - hard disks
 - the first sector is called MBR master boot record
 - the first sector of each partition is called VBR

- Boot sector: MBR and VBR
 - contains first-stage bootloader
 - and partition table (only MBR)
 - · boot loader and other info
 - bootstrap code, max 440 B
 - disk signature, 4 B
 - two null bytes, 2 B
 - primary partition table, 4x 16 B
 - 1st partition
 - 2nd partition
 - 3rd partition
 - 4th partition
 - signature: 0x55, 0xAA, 2 B

dd if=/dev/sda of=mbr.bin bs=512 count=1
hexdump -vC mbr.bin
ndisasm -o7C00h mbr.bin

- First-stage bootloader
 - MBR bootloader
 - checks partition table and finds active partition
 - loads its first sector (VBR) and executes it
 - VBR bootloader
 - finds the second-stage bootloader
 - reads its image into the main memory
 - executes it

- Second-stage bootloader
 - knows how to load OS (kernel)
 - may switch to protected mode
 - executes the loaded OS kernel
 - examples
 - LILO LInux LOoader
 - NTLDR NT LoaDeR
 - GRUB GRand Unified Bootloader
 - BOOTMGR Windows Boot Manager
 - boot manager
 - advanced options, interactive menus, ...

System software

SIC/XE loader

SIC/XE loaders

- Loader in Java
 - e.g. "Load object file" in the SicTools Simulator
- Loader in SIC/XE machine code
 - program in assembly
 - loads a program from a specific device

Type of loaders

- Absolute loader
 - program is loaded to a predefined address
 - directive START address
- Relative loader
 - program is loaded to an arbitray address
 - support for relocation (prenaslavljanje)
 - directive START 0

- Textual (human-friendly) format (ASCII).
- sequence of records
 - each record is written in one line
 - record types: H, T, E, M, D, R.
- hexadecimal representation
 - one byte is represented with two hex digits
 - one hex digit is sometimes called nibble

- Records H (head) and E (end)
 - appear only once
 - H is the first record, E is the last

1	2		7	8		13	14		19
Η	pro	gram nan	ne	СС	ode add	ress	С	ode len	gth

- Code address gives the location where the code is loaded.
- Address and length relate to the whole program.

- Start address is the address where the execution starts.
- After loading we jump to this address.

Record T

• code, text

1	2 7	89	10	≤ 69
Т	code address	len	code	

- Address and length relate to this record.
- Code must be part of the area specified with H record.
- Code is hexadecimaly encoded.

- Records D and R
 - export and import of symbols

1	2		7	8		13	14		≤ 73
D		name			value			other pairs: name, a	address

Name and value of the symbol we are exporting.

1	2 7	8 13	14		≤ 73
R	name			other names	

• Name of external symbol we are importing.

Record M

support for relocation

1	2		7	8	9	10	11		16
М		offset		le	n	+-		name	

- Offset from the code start.
- Length is given in nibbles.
- Name of the symbol.