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Memory hierarchy - content

9 Memory Hierarchy - objectives:

m A basic understanding of:
m Locality of memory accesses
m Importance and operation of the memory hierarchy

m Understanding caches:
m Their effect on the speed of computation
m A subset of the content of main memory

m Understanding concept of virtual memory

s Main memora is a subset of the content of virtual memory
(SSD,HDD)
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Memory hierarchy - content

9 Memory hierarchy

1 Locality of memory accesses
0 Memory hierarchy

0 Cache
m Example of cache operation
m Types of caches regarding restrictions on mapping of blocks
m Effect of the cache on the operating speed of the CPU
m Case: Effect of L2 cache on the speed of the CPU

0 Virtual memory
m Virtual memory with paging
m Page fault
m Strategies and algorithms
m Speed up address translation
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Memory hierarchy - content

0 Operation of the memory hierarchy
m 4-levels memory hierarchy - average access time as seen by the CPU

m Case: Effect of the miss-rate in main memory to the average access time in
three-level memory hierarchy
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9.1 Locality of memory accesses

m The principle of locality of memory accesses is one of the most
important phenomena, which is observed in the operation of von
Neumann‘s computer.

m Programs more commonly use commands and operands, which
are close to the memory addresses currently used.

m Programs often use the same commands and operands again and
again (more than once).
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Locality of memory accesses

m A typical program in 90% of time executes only 10% of instructions.
Types of locality :
m Spatial locality

m Temporal locality

m Locality of memory accesses allows the main memory to be
replaced with a memory hierarchy
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9.2 Memory Hierarchy

m The desire of programmers:
1 access as fast as possible and
1 memory as big as possible

m Memory hierarchy, which consists of several separate memories
with different characteristics, allowing the realization of this illusion:

1 Cache (can be in multiple levels)
1 Main memory
1 Virtual memory

m The successful operation of the memory hierarchy is possible due
to the already mentioned locality of memory accesses.
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Memory hierarchy

m The memory hierarchy therefore consists of several separate
storage devices with different characteristics:

O Firstin the hierarchy is memory M1 (closest to the CPU), the fastest,
most expensive and the smallest.

1 Last in the hierarchy is memory Mn (farthest from the CPU), the
cheapest, largest and slowest.

m The aim of the memory hierarchy is that the big, slow and
inexpensive memory Mn seems like fast and expensive memory

M1.
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Case: three-level memory hierarchy

M1

| |
| |
| |
| |
' :
| |
| |
| |
: :
: Static RAM :
| (SRAM) |
| |
l -fastest M2 l
I -mos;[I extpenswe Dynamic RAM I
l -smalles (DRAM, SDRAM) l
| |
| |
| |
| |
| |
| |
| |
| |
| |
: -slowest M3 :
| -cheapest — Magnetic disk |
} -biggestr drive or solid }
L —state drive- —— ——— '

CPU sees memory hierarchy as the Main memory defined in
Von Neumann'‘s model
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Memory hierarchy

m Operation rule of the hierarchy is that the memory content at level |
is a subset of the content at the level i + 1.

m If the information accessed by the CPU is not in M1, it must be
transferred from M2 to M1. If it is not in M2, it is transferred first
from M3 to M2 and then from M2 to M1.

m Transfers from one level to the next level is carried out
automatically, without the involvement of a programmer.
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Memory hierarchy

m From CPU, a 3-level memory hierarchy is seen as the size of the
main memory M3, with a speed close to the speed of M1.

m The memory hierarchy would be useless without locality of memory
accesses.
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Memory hierarchy

Memories in memory hierarchy [Patt]

L1 L2 L&
C C C Memory
CPU a a a bus
Memo Storage
€ E E X\ X
3 g R Flash
memo
Register Level 1 Level 2 Level 3 Memory referen?e
reference Cache Cache Cache reference
reference  reference  reference
Laptop Size: 1000 bytes 64 KB 256 KB 4-8 MB 4-16 GB 256 GB-1TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 uS
Desktop Size: 2000 bytes 64 KB 256 KB 8-32 MB 8-64 GB 256 GB-2 TB
Speed: 300 ps 1ns 3—-10ns 10-20 ns 50-100 ns 50-100 uS
(B) Memory hierarchy for a laptop or a desktop
L1 L2 L3 )
fo C C Memory Disk storage
CPU a a a bus B /O bus
c ; c
e € e Flash storage
Register Level 1 Level 2 Level 3 Memory
reference Cache Cache Cache reference Disk Flash
reference reference  reference memory  memory
reference reference
Size: 4000 bytes 64 KB 256 KB 16-64 MB 32-256 GB
) 16-64TB 1-16 TB
Speed: 200 ps 1ns 3-10ns  10-20ns 50-100 ns 5-10 ms 100-200 us
(C) Memory hierarchy for server
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Memory hierarchy
Memories in memory hierarchy
Distance from
Speed CPU and
and price access time Size
£
5 / Main memory \ 0 2 x
Q < @ @)
> . : 4 ® ®
g Semiconductor disk (SSD)
= Virtual memory
Magnetic disk (HD)
v || v v
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9.3 Cache

m Cache is a small, fast memory (SRAM) between the CPU and main
memory.

m Using cache in the memory hierarchy creates the illusion of fast
memory, which is faster than main memory.

m The contents of the cache is a subset of the contents of main
memory.

m CPU with memory address always accesses to the cache.
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Cache - principles

CPU

A

! Cache Main
> - memory

M, t,p, Hp

i MQ tag

M, cache

t,, time access to the cache [ns]

H, hit-rate in cache [%]

M, main memory

t,y access time to main memory [ns]

(hit-rate in the main memory is 100%)

average time access the entire hierarchy,
as seen by the CPU [ns]

2-level
memory
hierarchy

RA -

16

© 2024, Skraba, Rozman, FRI



" J &

Cache - principles

m When the CPU Access to information (command, operand) cache
are two options:

The goal (Hit) if the address (and content from this address) in the
cache = access time is t,,

Zgresitev (miss) If the address (and content) is not in the cache =

access timeis t,, +1{,,

The goal of the cache Zgresitev cache
K nl o L
CPE 4;} memory |° > Tr:: rTr]noarl; CPE ? mgrrr?c;ry <ﬂ_ Trrr:ee rrrlr:;;;w
. ML H Mt H block
__________________________ M?.t_a?_____. Mg tog
address ~  TTTTTTTTTTTTTTTTTTTTTmTTmmTmm T oA

inC ontents (command or data)
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Cache - principles

m Success of operation of the cache is measured:

N N
1 With hit-rate H H=—2= P
N N, +N,

N - total number of accesses to the cache (N=N, + N,)

N, - number of hits (the desired information is stored in the cache)

N, - number of misses (desired information is not in cache,
the transfer of information from the main memory
to the cache is needed)

1 Or with the miss rate 1 - H (we want to minimize it)
m In cache, hitrate is H > 0.9 (90%)

m |n case of miss, access to the main memory is necessary.
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Cache - principles

CPU

Main
memory

m Average memory access time t, (AMAT) as seen by the CPU is:

[, = Htap +(1- H)(tap + tag)

1-H)t,,

RA -

{, :tap+(

9

© 2024, Skraba, Rozman, FRI



" &

Cache - principles

m \When calculating two cache specialties should be considered:
1 Between main memory and cache there is always transfer of the

cache block (cache line), that consists of several adjacent memory
words (bytes)

1 Time in the computer is usually measured in clock periods

m Access time {,, to the information in the cache level L1 in most
computers is from one to several clock periods.

m In the case of miss = time for the access to the main memory and
cache block transfer is denoted as miss penalty {g.
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Cache - principles

m Miss penalty t5 is time that in case of miss (miss rate is 7 - H) is
added to the access time to the cache.

m Miss penalty is typically between 10 and 100 clock periods.

m If your computer has a cache level L2, then miss penalty is much
smaller because the L2 cache is faster than main memory.
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Cache - principles

m Average access time f, including miss penalty, is defined as:
t,=t,+1-H);

t,, - access time of cache
(1 - H) - the probability of miss in cache
tz— miss penalty (access time to the main memory + time for

transfer of cache block (line))

m Iftimes {,, and f; are expressed in clock periods, then also a
result ¢, is in clock periods.

m Average access time in seconds (.o is the duration of one clock
period in seconds):
t, [s] =t, [Clock period] * t-pg [S]

RA-9 22 © 2024, Skraba, Rozman, FRI



" &

Cache - structure

m The content of the cache varies =
1 Cache blocks are transferred from the main memory

1 and addresses of these blocks (block numbers from the main memory)

m Therefore, each cache consists of two parts:
1 Memory part, that is divided into blocks or cache lines

1 Control part, consisting of control words. Each block in the memory
part corresponds to certain control word containing the address of a
block (number of block in main memory), which is contained in the
memory part.
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n—k hitoy b bitow
Cache - structure
l:]n_1 []n_z n - - (‘jb Gb_-‘ & b I:]D
Cache . I p
W LY
Contral omrt of Masloy bloka Magloy besede
ontrol part o
block 0 Memory part v bloku
word 0 A
word 1 3 Control part Memory part
[¢) O
o ' % r A N\ — —
Con;[géﬁiﬂ of word 21 ) | " word 0 | word 1 | ooo | word 2b -1 | block 0
N — | " word 0 | word 1 | ooo0 | word 2b -1 | block 1
— o
X o
; r 3 o
° o)
) " word 0 word 1 | ooo | word 2b -1 | block M-1
Control part of . The block or a cache line = 2 the words
block M-1 o
N
=
° r
o) (@]
) S
o]
J
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Cache - structure

Structure and operation of cache

n—b bitov b bitov
=19pn=2 = = = 9 |dp—1**+*93]
\ /4 /
W L%
Maszlov bloka Maslov besede
v bloku

V-—veljavni bit
U-umazoni bit

Kontrolni del

Fomnilnisk:

WA

Oy

3

i
P
(?

N S
n—b [ naoslov [vjU
¥ —
blok 0O
zadetek
n-—? B naslov Iviul
H blok 1
zadetek
n-—b{ noslov iyl
e I A
zadetek [ ]
n—-b[ nasloy [VU
blok M-—1

n—b _L
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T
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<
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Cache - structure

m Block (or a cache line) consists of a number of consecutive
memory words (memory word is usually 1 byte in size).

m Block size ( B = 2°) is typically 4 to 512 memory words.

m Remember: Between main memory and the cache, only the entire
block is transferred.

m \When a block from main memory is transferred to the free block
frame in the cache :

1 Content of the block is transferred to the memory part of the block in
cache

1 Address (number) of block is transferred to the control part of the block
in cache
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cache - example

m  An example of cache operation:

1 Assume:

m processor accesses the memory words with the following sequence of
memory addresses:

m 9,10,11, 2, 3,9, 10, 11, 2, ..;
m Cache consists of blocks of 4 bytes (B = 22 = 4) and it is initially empty;
s Memory address is 5 bits long.

m The top three bits of the memory address specify a block number,

the lower two bits of the memory address determine the word (byte) in the
block (22 = 4)

RA-9 27 © 2024, Skraba, Rozman, FRI



CPU access to the memory address:

Control part

Memory part

9 10,11, 2, 3,9, 10, 11, 12,. . .

00 )
01

10
11

miIss
H
—»

00)

01 |

10

11 )

o

CPU —{010]01

00
01

10
11

\ 4

block 0

block 1

block 2M-

n—k bitoy b bitow
9n—{Up-2 =+ + v % [Ap—q1+e+dg
y N —
Naslov bloka Naslov besede
T E v Dloku
Memory addreiss k&ﬂ
0 OOOEOO $12
1 00001] $31
2 000i10| $CB
3 000{11| $74
4 00100 $67
5 00101 $ 45
6 00110 $ 0B
7 00111 §23
8 01000  $A4
o [@mmo1]| s1F
10  o10i10|f $36
11 01011 $06
12 o1100| S$FE
13 01101 $ 7A
14 o110 $cCC
15 011111 $ 5F
16 10000

fat

Main memory

bock3 | block2 | block | blocko
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CPU access to the memory address:

9 10, 11, 2, 3, 9, 10, 11, 12,. .. Memory address 8 bits Main memory
Control part ~ Memory part 0 OOOEOO $12 o
| o010 | $ A4 00| _ 1 000i01 $ 31 3
access~>| _ SIF 01 | % 2 000i10| $CB g
B 11(1) 3 3 000i11| $74 B
| | 805 00 _ 4 00100 $67
01| % 5 00101 $45 3
10 2 001i10|  $0B 3
1) 00111]  §23
8 01|00 $ A4 o
° 010 $ 1F 3
° 10 |otoj10| $36 2
11
ol T o 1
01 X~ !
10 [ 3 13 omio1|  $7A N
1 14 o110 $ccC S
2 N 15 01111 $ 5F
cPu —{DAm]01 8 bits 16 100/00 T
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CPU access to the memory address:

9,10, 11,2, 3,9, 10, 11, 12,. . . armoryacress o212 Main memory
Control part ~ Memory part 0 OOOEOO $12 o
oo | S 00 ) 1 00001 $ 31 %
ht =1 $1F 01| % 2 000{10| $CB o
access — $ 36 10 | 3 3 00011 $74 -
| | $ 06 (1):): i 4 001'500 $ 67
) T 01| % 5 001i01|  $45 5
10| = 6 00110 $ 0B 2
11 7 00111 §23
| | 8 01000 sA4 |
# T 2 9 010001 $1F 3
. 10 [@@|l10] $36 3
| | 5 - 11 010}11 $ 06 -
01 | S. 12 o1ioo| S$FE
# 1 10 [ S 13 o11i01| $7A ©
11 14 011110/ $CC g
« N 15 01111 $ 5F
cpu —s{[@mEno 8 bits 16 100:00 -
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CPU access to the memory address:

9,10, 11, 2, 3,9, 10, 11, 12,. .. Memory address 8 bits Main memory
Control part ~ Memory part 0 OOOEOO $12 o
| 010 | $ A4 00 ) 1 000201 $ 31 %

ht =1 $ 1F 01| % 2 00010 $CB S

aCcCesSsS ——» :g: 1? ) ° 3 OOOE 1 $74 —
| | 0 _ 4 001;00 $ 67

¢T 01| E S 001201 $ 45 5
10 [ 3 6 00110 $0B e
1) 7 00111 §23
| | 8 01000 $A4 |
# ] : 9 010[01| §1F >
0 10 o1oi0] $36 s
| | 00 ) - 11 1040} 11 $ 06 B
01 | %- 12 o1100| SFE
# T 10 [ S 13 011i01| $7A ©
010 11 14 011110| $CC S
« N 15 01111 $ 5F
cru —{@11 8 bits 16 100:00 -
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CPU access to the memory address:

fat

9,10,11} 23,9, 10, 11, 12,. .. 8 bit :
Memory address |<—IS>| Main memory
Control part ~ Memory part 0 OOOEOO $12 o
o010 | S 00 ) 1 00001 $ 31 %
o

1F 01 2 ||ooo|1o| CB =
# T §36 E ' ° °

) 11(1) 5 3 00011 $ 74
06 Y, | o
x 5 00101 $ 45 <
01| % . *
> : S
g 7 T 10 3 6 00110| $0B S

£ | 1) 7 00111 23

T 8 01000| $A4
7 g 9 010001 §1F S
° 10 010110  $36 3

11 |
| | 00 = 010511 $ 06 -
# 1 g =
10 [ 2 13 011:01 $7A ®
' o
L 14 o110 s$cc | g
« ] 15 01111 $5F |
cpu —|[000110 8 bits 16 100/00
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CPU access to the memory address:
9,10, 111 2,3, 9, 10, 11, 12,. ..

Memory address |«—

Control part Memory part 0
010 | $ A4 00) _ 1
$1F 01 M
$36 {10 | 2 3
p— $ 06 1) 7
000 | $12 00) _
$ 31 01 x 3
dacCesS ——» $CB 10 5 6
$74 11 ) 7
| 8
° 9
° 10
11
00 S 12
01 X~
10 2 13
" 14
|« »| 15
cPu —{880110 8 bits 16

8 bits

$12

$ 31

$CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$A4

$1F

$ 36

$ 06

$ FE

$7A

$CC

$ 5F

fat

Main memory

bock3 | block2 | block | blocko
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CPU access to the memory address:

9,10, 11,2} 3,9, 10, 11,12,. .. 8 bit -
Memory address |<—IS>| Main memory
Control part ~ Memory part 0 OOOEOO $12 o
T o10 | P 00) _ 1 00001 $ 31 3
” $1F 01| % 2 000{10| $CB o
BI66 101 3 3 11 74
R
[ 000 | $12 00) _ ) 00 ioo
31 001:01 45 =
hit =1 : 01° § : 5 S
$CB 10| 5 6 00110 $0B 2
T 8 01000| $A4
7 g 9 01001| $1F S
° 10 010110  $36 3
11 |
| | 00 = 010511 $ 06 -
#1 s =
10 [ 2 13 011:01 $ 7A ®
: O
000 11 14 011110| $CC 3
« ] 15 01111 $5F |
cpu —|[000] 11 8 bits 16 100100
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CPU access to the memory address:

9,10, 11, 2, 3} 9,10, 11, 12,. .. Memory address 8 bits Main memory
Control part ~ Memory part 0 OOOEOO $12 o
| 010 | $ A4 00 ) o 1 000501 $ 31 %

hit =1 $ 1F 011 % 2 00010 $CB 3

access :gg 11? 3 3 000;11 $ 74 B
T o000 | 512 00 _ 4 00100 $67
$ 31 01| % 5 00101 $ 45 -
#1 §CB |10 [ =2 6 o00110] $o0B S
$74 1) 7 00111 §23
| | 8 01000 $A4 |
#1 ° 9 [@melo) siF »
° 10 010110 $36 3
| | 50 < 11 010211 so6 |
N 12 011i00| $FE
2 T 01 | %- : )
10 [ S 13 01101| $7A x
010 11 14 011110 $CC S
« N 15 01111 $ 5F
CPU —{[@10]01 8 bits 16 100100 o
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n—b bitov I b bitov
] )
9n—-19p-2 = = = 9p |Ap—1+++dp

" AN s

CPU access to the memory address: Hoslow boke ENGSLWmEﬁede
;9,()f1r8i,ss1i:é ? 3,9,10, 11, 2,. .. Vemory addreiss 8 bits Main memory

Control part ~ Memory part 0 000500 $12 o
| o010 | $ A4 00) _ 1 00001 $ 31 S
$ 1F 01{ % 2 000110/ $CB 3

iLE 10 | 3 3 000111 $74
$ 06 11 | —

500 ] Th 007 _ 4 00100 $67
$ 31 01l % 5 00101 $ 45 X
$CB 10| = 6 00110 $0B 2

$74 11 ) - 001511 $ 23
| g 01000 sas4 |
° 9 01001 $1F <
° 10 010{10| $36 S

| 11 010111 $ 06

o S 12 01100| SFE
10 [ 3 13 01101  $7A 2
1 14 011i10| $CC g
« | 15 01111 $5F |

8 bits 16 100500
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CPU access to the memory address:
9,10, 11, 2,3,9,10, 11, 2,. ..

------------ 4 . misses

Simple Cache model in Logisim

----- ROM4x32 . . . . . ..

o nsasnaanunnnnuc L

.. 300000000

............................................................................................. ] e e e e e e P

""""""""""""""""""""" . . N N =X 01

SA4 00
$1F o1 | S
$36 10 [ =

$06 11
$12 00 -\I
5 |
\ scB 10} 3
574 11 [

L
o

) 3
o1 | ©
10 [ 2

11

RA-9
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Cache - principles

Access to an operand in memory:
m HIT in cache (probability H):

1 CPU accesses to the operand in cache (read or write)

m MISS in cache (probability of 1-H) :
1 Transfer of the block from main memory to cache or

1 Block replacement - if the cache is full, one of the blocks stored in the
cache is saved back to main memory (is this always necessary?), on
its location a new block from main memory is transferred.

1 CPU accesses to the operand in cache
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Cache - principles

Types of caches according to restrictions on the mapping of
blocks

m Search for the block in cache must be fast.

m [f this is not possible, it is necessary to introduce restrictions on
mapping a block from main memory to cache.

m Depending on the severity of restrictions on the mapping, we
distinguish three types of caches:

1 Associative cache
m (No restrictions on the mapping of blocks in the cache)

1 Set-associative cache
m (Block can be mapped only to a specific set, but within the set without limitation)

1 Direct cache
m (Block can be mapped only to a specific block frame)
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Cache - principles

1 Fully associative cache

m Memory part of the cache is a static RAM (true for all three types of
caches)

m Control part of the cache is associative memory, which allows fast search
for a block number across whole control part of the cache

m Since the search is fast across whole cache, the block can be mapped to
cache anywhere in any block frame.

m Because of today's technology associative memory size is limited, fully
associative caches are rare and large only a few 100 blocks.

m |f we want a large cache, the solution is another type of cache - set-
associative or direct.
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Mapping block in fully associative cache

Fully associative cache of size 8 blocks

Main memory

Block number Q0

Blok

01
Search Control part Memory part  Block nr. 02
— | 02 0
| | 03
— | 05 2
L 1 o5 |
— 3
4 06
07
_> —_—
2 08
—>
. 09
10
11
12
A block from the main memory can be 13 ([
mapped in any cache block
without limitations, since the associative search 14
In control part works quickly. 15 L
16
RA-9 41
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Cache - principles

1 Set-associative cache

m The entire cache is divided into several parts - called sets.
m Each set has a smaller associative cache.

m Search for block within the set is fast (associative control part), search for
the block in different sets is much slower

m Therefore, a certain block of main memory can be mapped only in the
specified set (it is not necessary to search between sets), but within the set
can be mapped anywhere.

m The number of blocks in the set is called the associativity E.

m The higher the degree of associativity, the higher is hit rate.
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O n—s—b bitoy 5 Ritee b bitow

nasho

N F R ¢
W W Ly

Mapping block in set-associative cache  Maslov bloka Hastoy setn | Nasloy bewede
T

Set-associative cache Main W Blok

size of 8 blocks, divided into 4 sets. Block number 00 —
2 block in the set (= degree of associativity of E = 2)

01 |
02 00 f 10
03 |
04 |
o5 | o101
06 |
07
08
09
10
11
12

Any block of main memory can be mapped 13 (1 oif 01
only in the specified set, but in any block in the set. 14 |

Number of sets = 15
(block and set nr.) mod (number of sets in the cache) 16

Control part Memory part  Setnr.

13 | | I
[ ]

05

Search
— 02

—
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Cache - principles

1 Direct cache

m The entire control part of the cache is usual addressable memory - static
RAM

m Therefore, it is impossible to do a fast block search (it would be too slow).

m Certain block of main memory can therefore be mapped only in the specific
block frame in cache (so search is not necessary anymore)

m If the block frame, into which a new block from memory must be mapped,
is full, it is necessary to replace the block.

m Hit rate is therefore in direct cache compared with the set-associative
cache of same size, much smaller ..
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Mapping block in direct cache
. : Block
Direct cache with size of 8 blocks Main memory |, 2%
Control part is a normal block 00 —
addressable memory 01
Control part Memory part  Block nr. !
0 ) 02 | 0010
1 o mod® 03 |
Search
04 .
— | 02 | | | 2 :
; o5 (I o101
4 06 '
07
[ ] —
13 ‘2 08
. 09
10
11
Fixed block of main memory can be mapped 12 .
only in the specified block frame in cache (always the same) 13 _ 15101
Position in cache = 14
(Block nr.) mod (Number of block frames in the cache) 15 L
16
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Mapping block in direct cache
. i Block
Direct cache with size of 8 blocks Main memory |, 2%
Control part is a normal block 00 o
addressable memory 01
Control part Memory part  Block nr. !
0 ) 02 | 0010
1 o mod® 03 |
Search
04 .
— | 02 | | | 2 :
; o5 (I o101
A 06 '
07
05 _ 5 Block replacement 08 T
6
. 09
10
11
Fixed block of main memory can be mapped 12 .
only in the specified block frame in cache (always the same) 13 _ 15101
Position in cache = 14
(Block nr.) mod (Number of block frames in the cache) 15 L
16
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Cache - mapping block in the cache for different types of caches

fat

Cache with 8 blocks

block

Associative
cache

Set number

Set-associative
cache
associativity E = 2

Block number

Direct
cache

N O hw N=2O

N OO~ WwW N-=O0O

Block

e

block

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

Block

—

Main memory

RA-9
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Cache - mapping block in the cache for different types of caches

Cache with 8 blocks Block Block Main memory
[ D
block 0 block 00 o
1
o 01
Associative i Block can be
Cache 4 mapped anywhere 02
5 03
6
7 04
05
Set number 0 06
07
Set-associative 08 —
o cache 5 09
associativity E = 2
3 10
11
Block number 0 12
1
2 13 11 01
Direct 3 14
cache 15 B
6 16
7
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Cache - mapping block in the cache for different types of caches

Cache with 8 blocks Block Block Main memory
D — e
block o block 00 o
1
. 2 01
Associative 3 02
cache 14
5 03
6
7 04
Block can be 05
Set number 0 mapped to exactly - g
determined set
o7
Set-associative J3mod4 =1 08 —
cache 09
associativity E = 2
10
3
11
Block number 0 12 .
; 13 11101
Direct 3 14 !
cache g 15 L
6 16
7
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Cache - mapping block in the cache for different types of caches

fat

Cache with 8 blocks

block

Associative
cache

Set number

Set-associative
cache

associativity E = 2

Block number

Direct
cache

N O hw N=2O

—

N OO~ WwW N-=O0O

Block

e

block

Block can be
mapped to exactly
determined frame

13mod8=5

00
01
02
03
04
05
06
07
08
09
10
11

12
13
14
15
16

Block

Main memory

101

RA -
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cache - restrictions on the mapping block in the cache

Cache 8 blocks Blok Blok main memory
block 0 block 00 o
1
L. 2 01
Net associative Block can be
Cache 4 mapped anywhere 02
S 03
6
7 04
05
number of sets 0 06
Block can be o7
_ fati 1 mapped to exactly —
Set-associative minad st 08
cache 5 09
rate assoc. E =2
10
3
11
Block number (set) 0 12
! 1
2 3 11 01
direct 3 14
4 Block can be
CaChe 5 mapped to exactly 15 L
6 determined frame
- 16
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Impact of cache to the speed of CPU

m Access to the cache:

O HIT:

CPU

m read - usually 1 clock period,

m write -read block,

- change the content,

it
| cache | Main
- ) memory
a 1
M, t,,H
My tog

- write block back - typically a clock period more.

RA -
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Cache - Cache impact on CPU speed

0 Zgresitev: R .
. | Cache Main
CPU H *

m access to the main memory,

transfer of block to the cache,

write block in the cache,

followed by reading or writing as in case of hit,

m if the cache is full, it is necessary to replace the block.

For all these operations in case of miss, it takes from 10 to 100 clock
periods (miss penalty).
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Cache - Cache impact on CPU speed

m Misses in cache reduce the operating speed of the CPU, i.e. they
increase the CPI.

m |deal CPI (CPI,) — disregarding misses in cache

m Real CPI (CPIy) — including misses in cache
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Cache - Cache impact on CPU speed

m Real CPI with respect zgresitev in the cache:

CPI, =CPI, + M,(1-H) = Miss _ penalty

CPI; - real CPI
CPI, - ideal CPI (excluding misses
in cache)
M, - average number of
memory accesses per
instruction

m Real time of execution of the program with N instructions is:

CPU,, . =N=*=CPl, =t

me
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Effect of cache to CPU speed - an example

Example: Effect of L2 cache to the CPU speed

m Processor has ideal CPI, = 1, there are no misses in instruction cache L1
m Clock frequency of the processor fope = 4 GHz

m Probability of miss in the L1 cache is 2%

m  Miss penalty is 100 ns (time to transfer the block from the main memory)

m If we add L2 cache to a hierarchy with miss penalty of 5 ns (time for the
transfer of the block tg,), a global probability of miss in L2 is 0.5%
(general probability of the access to the main memory)

m How faster is the operation of CPU, if we add L2 cache to the memory
hierarchy?
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2-level memory hierarchy (no L2)

CPI, = 1 1-H, = 0.02

miss penalty tg, (time of transfer
a block from the main memory
to the cache)

ts,= 100 ns = 400 [cp]
[cp] - clock periods

H,=1; tg,
[s]=0,25- 10°° [s]=0,25[ns] The duration of one clock period

fo_ 11
P fe  4-10°

100[ns]

0,25[7% ]
o

CPI,(L1)=CPI, +(1-H,)-t;, =1cp]+0,02-400[cp] =9 [cp]

= 400[ o]

l; =

Due to the misses in the cache, the CPI increases from 1 to 9 clock periods
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3-level memory hierarchy

CPI, =1 H. =002
1-H,5 = 0.005
tg, =5ns
H3= 1; 1:|33
5[ns .
by, = [—n]s = 20[cp] b':'lme to transfer a
ock from L2 to L1
0,25[—]
cp

CPI,(L1,L2)=CPI, +(1—-H,) t;, +(1—H,;) -ty =

miss penalty tg, (time of transfer
a block from the main memory
to the cache)

tg,= 100 ns =400 [cp]
[cp] - clock periods

1-H,¢ represents a global
probability of miss in relation
to all memory accesses and
includes local probabilities of
miss in L1 and L2

(Main memory is accessed
only when both misses
happen)

=1[cp]+ 0,02 -20[cp] + 0,005 -400[cp]=1+0,4+2 = 3,4 [cp]

CPI(L1) 9
CPI(L1,L2) 34

Speedup =
P P Is 2.6-fold

If we add L2 cache, the speed increase

RA -
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CPU

Comparing calculations using local or global probabilities:

CPI(L1,L2) = CPI, + (1 —H,) (£, + (1 —

CPI, = 1 ]

3-level memory hierarchy

—

1=0.02

.

tgo=5ns

=CPI, +(1-H,) t5 + A -H)A - H,,) - Lss
=CPI, +(1-H,) t;, +(1 -
=1[¢p] + 0,02 -20[cp] +0,005-400[cp] =1+0,4 +2 = 3,4 [cp]

In L1 cache local and global
probabilities of miss are the
same, because all memory

accesses come in L1 cache.

HZG) 'tB3

In L2 cache a local probability of
miss is 1-H,, expressed in
relation to local accesses only (in
L2), while global probability is
related to all memory accesses .

miss penalty tg, (time of transfer
a block from the main memory
to the cache)

tg,= 100 ns =400 [cp]
[cp] - clock periods

1-H,¢ represents a global
probability of miss in relation
to all memory accesses and
includes local probabilities of
miss in L1 and L2

(Main memory is accessed
only when both misses

Hy=1; t55

/-/ZL) . t33) = happen)

In multilevel hierarchies, global
probabilities tend to be more useful, as
they include also the impact of
previous levels (local ones refer only to
a certain level)

RA-9
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Effect of cache to CPU speed - an example o o .
Example: Effect of L2 cache to the CPU speed:
local and global probabilities

Global :
CPlg = CPl; + (1 —Hy) " tgio+ (1 - Hyg) " g
CPlz =1+ 0.02*20 + 0.005*400 = 3.4 t-p¢

Local :
I_|1L H1’
(1-H,, )=(1-H,)/(1-H,)=0.005/0.02 = 0.25

CPlg = CPIl;, +(1 —Hy) ™ (tgo+ (1 —Hy) " tzg)
CPlg = 1 +0.02* (20 + 0.25*400) = 3.4 toor
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Cache Memory - Intel

Structure of 4-core processor Intel Core i7 (Haswell)

DDR3 memory controller

2x8B @ 16GT/s=256GB/s 4x20b @6,4GT /s
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Cache - AMD processor

Structure 4-core processor AMD Opteron (Barcelona)

DDR2 memory controller

2x8B @ 667MT /s 6x2B@ 2GT/s
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Caches — Effect of a program on execution speed in memory hierarchy

Loop Interchange

Some programs have nested loops that access data in memory in nonsequential
order. Simply exchanging the nesting of the loops can make the code access the
data in the order in which they are stored. Assuming the arrays do not fit in the
cache, this technique reduces misses by improving spatial locality; reordering max-
imizes use of data in a cache block before they are discarded. For example, if X is a
two-dimensional array of size [5000,100] allocated so that x[ 1, ] ] and x[ 1, ]
+ 1 | are adjacent (an order called row major because the array is laid out by rows),
then the two pieces of the following code show how the accesses can be optimized:

/* Before */
for (j=0; j<100; j=3j+1)
for (i=0; i<5000; i=1+1)
x[11ljl=2*x[11[j];
/* After */
for (1 =0; 1 <5000; i=1i+1)
for (j=0; j<100; j=j+1)
xLilljl=2*x[11L]j];

The original code would skip through memory in strides of 100 words, while the
revised version accesses all the words in one cache block before going to the next

block. This optimization improves cache performance without affecting the num-
ber of instructions executed.
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Caches — Effect of a program on execution speed in memory hierarchy

5
Radix Sort
e 4
2
83
w
0
=
o 2-
=
O
©
S
Quicksort
@ & * & 0 &
0 1 I

4 8 16 32 64 128 256 512 1024 2048 4096

C. Size (K items to sort)

FIGURE 5.19 Comparing Quicksort and Radix Sort by (a) instructions executed per item
sorted, (b) time per item sorted, and (c¢) cache misses per item sorted. These data are from
a paper by LaMarca and Ladner [1996]. Due to such results, new versions of Radix Sort have been invented
that take memory hierarchy into account, to regain its algorithmic advantages (see Section 5.15). The basic
idea of cache optimizations is to use all the data in a block repeatedly before they are replaced on a miss.
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9.4 Virtual Memory

m Virtual memory (virtual memory) = space in secondary memory
(SSD or magnetic disk), which is from the user viewpoint seen as
the main memory.

m Access to the auxiliary (secondary) memory is implemented with
the I/O commands or I/O programs.

m [ransfers between the main and virtual memories are invisible to
the user (= virtual memory)

m The additional logic in the CPU and software is needed
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Virtual memory

m Virtual memory is in most today computers, the reason is not
only size of the main memory as was years ago, but also:

0 Much lower cost of secondary memory.
1 Simple solution for positional independence of programs.

1 Memory protection. -

m Space in secondary memory (e.g. HDD): File Memory

0 Space for virtual memory. . (ii) Conventional virtial memory systems
0 Storage for files (typically much larger part).
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Virtual memory

m T[he access time and the transfer of the information (= miss

penalty) from the auxiliary memory to the main memory is very
long.

m Solutions to reduce the impact of very large miss penalties for
virtual memory:

0 The blocks must be large (4KB, 8KB, up to 64KB or more)

01 Each block can be mapped to an arbitrary block of main memory (no
restrictions)

1 Blocks replacements are done by the software and not the hardware
as in the case of cache
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Virtual memory

m Memory address from CPU = virtual address (as it relates to
virtual memory).

m |n conjunction with the virtual memory, we denote main memory
as physical memory.

m Address that refers to the main memory = physical address
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Virtual memory

m For each memory access:
virtual address — mapping — physical address

m Physical address exists, if there is a hit in main (physical)
memory.

m For most computers, the physical address (not virtual) is used to
access the caches.
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Mapping of virtual addresses

Addressed information is in physical memory - hit
Probability of hit H

\éi(;tual Physical
address
l addlress Mg, t, H Mn, t,,

CPU Mapper

\ 4
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Mapping of virtual addresses

Addressed information is not in physical memory - miss
Probability of miss 7-H

\éi(;tual Physical
address
l addiess Mg, tH Mn, t,,

y
<
Q
©
©
®
=

CPU

Virtual
address
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Mapping of virtual addresses

Entire hierarchy
Addressed Information is in physical memory - hit

Virtual Physical
address address
l l M1, t,, M2, tg, M3, tg, M4, tg,

CPU » Mapper | |
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Mapping of virtual addresses
Entire hierarchy
Addressed information is not in physical memory - miss
Virtual
address
l M1, t,, M2, tg, M3, tgs M4, tg,
CPU »| Mapper
Virtual
address
Notice of miss in the
physical memory
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Mapping of virtual addresses

Entire hierarchy
Addressed information is not in physical memory - miss

Virtual Physical
address address
l l M1, t,, M2, tg, M3, tgs M4, tg,
CPU »| Mapper
A
Physical
address
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Mapping of virtual addresses

m  mapping function is established in software (operating system)

m \When you turn on your computer, the mapping of virtual

addresses into physical must be switched off (because it does not
yet work).

m Mapping can be switched off at any time, in this case :
virtual address = physical address
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Mawdezni

. naslow
0
aF

Virtual memory by paging o
m Auxiliary memory = divided into pages: =
[0 pages = blocks of equal size.
(2" TP-2)#2P
(2M7P_qy0F

n (i) Conventional virtial memory systems Fizigni
. . . . naslo
m Main memory = divided into page frames: 0
. . 2
[0 page frames = slots of the same size as in the seco
(auixiliary) memory.
(Zf—p_]_:]*Qp

T
m  Number of pages in the virtual memory is usually much larger as the
number of frames in the main memory:

1 illusion of practically unlimited large memory.

atran O

stran 1

stran 2

stran 3

stran 2N-P-2

stran 2MP—1

2" Pstrani

a) Mavidezni rj]somnilnik
velikosti 2

besed

akyir strani O

okyir strani 1

akv.str.2f-F_q

21 7P skvirav

b Fizi&ni pomnilnik
welikosti 2' besed

RA-9 78 © 2024, Skraba, Rozman, FRI



" &
Virtual memory - paging
m Each page from the virtual memory can be downloaded in any
frame in physical memory.

m to the user, the division of the memory space to pages is invisible.

Frostor nawideznih
naslowonr Ag

Masloy

Prostor fiziénih
" naskevaoy Af

S
&
A
=
]
o
=]
=

m Mapping of virtual addresses (page address) to a physical
addresses (frames) is through the page table ->

79
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Virtual memory - paging

Case: Mapping of virtual addresses into physical in case of paging:

Page size (and frame) 4 KB (= 22 B)
Virtual address of 36 bits (= Virtual memory max 23 B = 64 GB)
Physical address of 32 bits (= Physical memory max 232 B = 4 GB)

36-bit virtual address

Page number

_ 12-bit address
Mapping Page table of words within

page

Frame number

32-bit physical address
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Virtual memory - paging

building tables page

The size of the virtual memory 2" Bytes (where n = 36 = virtual memory = 64 GB)
Size page 2P Bytes (at p = 12 = page size = 4K)

Number of pages in virtual memory = 2" (236 -12= 224 = 16 M pages (M = 220))
Number of descriptors in Page table = Number of pages = 16 M

| -

O

o

Descriptor page 0 =
(@)

Descriptor page 1 8
(D)

O

©

/ -

V| P [RWX|C Frame number V - valid bit (Valid)

P — presence bit (Present)
RWX - protection key (Read, Write, eXecute)
C - dirty bit (Change)

descriptor page 2"P-1
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Virtual memory - paging

m Page descriptor = field in the page table, that describes a
particular page.

m Number of descriptors in the page table is equal to the number of
pages in the virtual memory.

m Table page is usually located in the main memory.
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Virtual memory - paging

Mapping virtual addresses into physical with paging

Page table register n-bit virtual address
= T a |apq ... a,
— AN J
- N - YT e
S’;art adcirebsls Page number p-bit address
of page lable of words within
page
Descriptor page 0
Descriptor page 1
frame number
Page table Descriptor page 2n+-1
v
f-bit physical address | agq.......... a, |[RE ag
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Virtual memory - paging

Mapping virtual addresses into physical with paging

Page table register n-bit virtual address
= a, Apqe e ... ag
— AN J
— /) ~"
S’;art adq[rebsls TPage number p-bit address
ol page table + e of words within
J page
Descriptor page 0
Descriptor page 1
- »[V|P Frame number
T
Page table Descriptor page 2"p-"
I v
f-bit physical address | @gq. ... . ... .. P I a

RA-9 84 © 2024, Skraba, Rozman, FRI



" J &

Virtual memory - paging

Case of a program:
Program occupies 4 pages (0,1,2,3), transferred to MM in page frames 0,5,3,2

6-bit physical address (3+3) 8-bit virtual address (5+3)
= I 'f.p ap 1o v o dg anq- - / ------------ ap ap 1 o o e - ag

Page number  p-bit offset address

e e (PN)
), 0807060504030201 2;:‘ stran 0 |
0000000000000000 Page 0: 1,1,111,0, 0 (Fr. Number o 2pl stran 1 i
2|13837363534333231 Page 1: 1,1,111,0, 5 (Fr. Number pi stran 2 :
¥
3|12827262524232221 Page 2: 1,1,111,0, 3 (Fr. Number) e \| stran 3 ,=
4|0000000000000000 Page 3: 1,1 ,111,0, 2 (Fr Number ‘Lm"
511817161514131211 Page 4: 0,0,000,0, 0 (Fr. Number)
Page 5: 0,0,000,0, O (Fr. Numbet)
MM: 8 page frames Page Descriptor 21 VM: 32 pages with 8
with 8 words-bytes, Page Table Zggrliiﬁc)(;frsn’s
64 locations V| P RWX|C| Stevilka okvirja
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Virtual memory - paging

Case of a program:
Program occuples 4 pages (0,1,2 3) transferred to MM in page frames 0,5,3,2

. iNavrdezm pommi’nrk modeI

rogram za;ema 4 stram (0 1 2 3),
KISO VGPVOkVH;lth 0 53 2

.... . .Navidezni naslov. .

. 8 bitni navidezni nas.'av

. 5b t. strani | 3b naslov znotraj : strani. -

IFageNum: e

RA-9

00000 00000 00000 00000,
00000 00000 00000 00000| *
00000 00000 00000 00000 -
00000 00000 00000 00000| - - -
00000 00000 00000 00000 Z o

Page 0: 1,1,111,0, 0 (Fr. Numberi

Page 1: 1,1,111,0, 5 (Fr. Numberi

Page 2: 1,1,111,0, 3 (Fr. Numbe

Page 3: 1,1,111,0, 2 (Fr. Number|

Page 4: 0,0,000,0, 0 (Fr. Numbe

Page 5: 0,0,000,0, 0 (Fr. Numbe

 0so7060504030201 R
1
C 2
-+ 3

080?0605.0403()201

ROM 8x64 . . . .

0000000000000000(
3837363534333231|
2827262524232221|

1817161514131211

pooooyVsebina_besede

Vseb. na stram

© s+t 1b|0000000000000000——

- V/(Valid), P (Present), RWX (Read,Write.eXecute), C (Change), FN (Frame Number) - = ... = ... oo oo STedeTER

.

............. C
_ 0807060504030201

T
1817161514131211)_ ‘IA
IA

A

A

2827262524232221|
3837363534333231|
- -
0000000000000000] . -
0000000000000000 .

0000000

0000000000000000—
_ 0a|0000000000000000

0e (0000000000000000| -
0f |0000000000000000] .

—— 12|0000000

L 13|0000000000000000—

16|0000000000000000|

0000000000000000™

__1f|0000000000000000 4|

Page Descriptor 2"

Page Table

| V| P |RWX| C| Stevilka okvirja
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Virtual memory - paging

m Linear mapping - a virtual address space is linear. Mapping the
virtual addresses has no restrictions, as if we did not have virtual

memory.

m Division of storage space ton pages is invisible to the user -
normal programmers do not need to know of the existence of the

pages.

m A single Page table = One-level mapping
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Virtual memory - paging

m Operating system for each program establishes its page table. When you switch
to another program to replace the contents of the register, which points to the

page table Virtual Physical
address address
0 A 0
4K B I' 4K C
8K C 8K
12K D 12K Physical
— 16K A main memory
Virtual memory 20K

— 24K B
28K

h

m Program state is defined by the page table, program counter, and registers (=
process).

m Page table determines the address space, that can be used by the process
(program).
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Virtual memory - paging

Page tables obviously take up a lot of space in memory

Page table can be divided into multiple levels = multi-level
mapping

Advantage: reduces the space occupied by a page tables in main
memory.

Mostly, two or three-level mapping over two or three levels of
page table is used.
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Virtual memory - paging

m The operating system allocates main (physical) memory to
processes and is responsible for updating the page table.

m Virtual memory allows the use of main memory to multiple
processes so that:

1 a memory space of one process is protected from other processes.
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Virtual memory - paging

Page faults

m Page fault: if the virtual page is not in any of the frames in the
main memory (P-bit of page descriptor = 0), it triggers an
exception for the page fault.

m Page fault exception = starts a service program that:

0 finds a page in the virtual memory (on disk);

0 determines the frame in main memory, where a page will be mapped
and transferred,

[ updates descriptor of this page in page table.
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Virtual memory - paging

m \When the operating system creates a process, usually creates
space for all process’ pages (swap space).

m At the same time, it creates a data structure that for each page
contains information, where it is stored on disk.
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Virtual memory - paging

Comparison of virtual memory realizations

Intel Core i7 ARM Cortex-A8 ARM Cortex-A53
(Nehalem) (32-bit) (64-bit)
Virtual address 48 bits 32 bits 48 bits
Physical address 44 bits 32 bits 44 bits
) 4, 16, 64 KB; 4,16, 64 KB;
Page size 4 KB, 2 MB, 4 MB 116 MB 1.2 MB: 1 GB
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Strategies and algorithms

m Operation of virtual memory is controlled by operating system, with
the aim of achieving maximum utilization of the computer.

m As a large utilization, it is generally considered that the given set
of programs is executed in the shortest possible time.
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Virtual memory - strategies and algorithms

m The utilization of computer is influenced by the choice of rules that
determine:

0 How many page frames in the main memory are assigned to a program.

0 When, where and how many pages should be transferred from the
auxiliary (secondary) to the main memory.

1 Which pages should be transferred from the main memory back to the
auxiliary memory.
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Virtual memory - strategies and algorithms

m These rules are called assignment, filling and replacement
strategies.

m \When virtual memory strategies are realized in a program, on the
other hand in caches it is realized by hardware.

m All three strategies are implemented with algorithms collectively
denoted as memory management.
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Speed up of mapping
m \When mapping a virtual address into a physical address

1 it requires access to the page table

[1 tables are stored in main memory or even in virtual memory

m  Any access to the memory therefore requires two accesses to the
main memory (if the mapping is single-level):

1 1. access to the page descriptor in the page table in main memory

1 2. access to the desired word in the physical address in main
memory
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Virtual memory - Cache mappings

m |In multi-level mapping, number of accesses is increased upto 3 to
4 accesses to the main memory.

m [oo0 slow!

m Solution: Special cache in the CPU, that contains some of recently
used page descriptors (never operands or instructions).
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Virtual memory - Cache mappings

Mapping cache (translation cache)

TLB (Translation Lookaside Buffer)

The length of the block in the cache is the same as the length of the page
descriptor. In the control part of the cache we have the page number, to which

descriptor belongs.

A high probability of hit (99% to 99.9%) can be achieved with just a few
descriptors, therefore TLB cache may be small and fully associative.
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Virtual memory - Cache mappings

m  With the hit in mapping cache (TLB), access to the page table in
main memory is not necessary.

m Harvard architecture (separate instruction and operand cache),

requires two mappings caches (instruction and operand - ITLB and
DTLB).
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Memory hierarchy

9.5 Operation of the memory hierarchy
m The memory hierarchy from the CPU looks like a single memory:

1 With a speed that is close to the speed of cache (memory that is
closest to the CPU).

0 The size of the virtual memory on auxiliary memory (last in the
memory hierarchy).
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Memory hierarchy

m The memory hierarchy differs from single-level memory in
following characteristics:

[0 The access time is not the same for all memory addresses, it
depends on the level of a memory in which currently searched
memory word is located.

1 For certain memory access we can not predict its duration, we can
only calculate statistically determined average value of the access
time.
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Memory hierarchy

m CPU sends to the memory hierarchy always address that refers
to memory M, (last in the hierarchy), but this does not mean
that access is in fact carried out to M,..

O if the information wanted by the CPU, is in M, (= hit), then access
to M, is executed.

O if the information is not in M, (= miss), it is transferred from the M,
to M,

01 if the information is not even in M, it is transferred from the M5 to M,

0 For any access requested, information is always in the memory M_
on the last level
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Comparison of cache and virtual
memory with paging

Cache Virtual memory
Access Cache line (block) Page (page frame)
Block 16B to 128B 4KB to 16KB (also a few MB)
Miss probability (1-H) 0.1% to 10% of L1 <0.0001% (for main memory.)
Hit few clock periods ~ 10 to 100 clock periods
Miss penalty ~ 10 to 100 clock periods ~ 10M clock periods
Block replacement hardware Software
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4-level memory hierarchy

CPU chip

CPU

Cys ta1, Sy M?2

C2 g2, S2

L1 and L2 caches (SRAM) are

usually on the same chip as the CPU

c, — cost/ bit level i

t,, — access time cache L1

tg; - time to access and transfer the block
from level i to level i-1

s, — size of the memory level i

M3
Cs tg3, S3

Dynamic RAM
SDRAM

Relations:
Ci > Cjsq
L < taisq
S; < Sj41

M4
Cys tgy, Sy

Auxiliary memory
- magnetic disk
or SSD
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4-level memory hierarchy

Main memory as defined in the von Neumann model

CPU <

M1
Cys ta1, Sy

M2
C2 g2, S2

M3

size M,

L1 and L2 caches (SRAM) are

usually on the same chip as the CPU Cs, g3, S3
Dynamic RAM
SDRAM
A 4
as a single memory t,, —access time cache L1 C>c Ca» taa, Sy
with an average time ts, - time to access and transfer the block tl < t'” Auxiliary memory
access t, and ; . ai  ‘ait+1
cino M, from level i to level i-1 _ S <S.,, - magnetic disk
s, — size of the memory level i or SSD
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Memory hierarchy

Rule: If the content is in level i, it is certainly also in level (i + 7).

m H, = (global) probability that for any access to the memory
hierarchy, the content is in the layer |.

m (1-H;) = (global) probability that for any access to the memory
hierarchy, the content is not in the layer .

m average access time f, to n-level memory hierarchy, as seen by
the CPU is:

t,=t,+Q-H)ty, +...+QA-H, )ty +...+ Q1 -H, ,)t;,
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Memory hierarchy

m 4-level memory hierarchy :

H1 ta1

H3’ 1:B3

= t,+(A-H)t,, +(1-H)ts + (1 - H,)E,,
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Case: Impact of the miss probability in the main memory to the average
access time in 3-level hierarchy

CPU

t op - access time of L1 cache

H, - probability of cache hitin L1 (1-H, - probability of miss in L1)

t gg— access time to the main memory and the transfer of a block from main memory into L1
H, - probability of hit in main memory (1-H, - probability of miss in the main memory)

t g, — access time to virtual memory and transfer of block from virtual memory to main memory
t , - average access time of the entire hierarchy as seen by the CPU
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Memory hierarchy — case: 3-level memory hierarchy

1. Let the probability of hit in main memory be Hj = 0.999995 = 99.9995%,
probability of miss in the main memory is 1-H, = 1 - 0.999995 =
=0.000005 = 0.0005% or 1-H,=0.5*10-°

top=2ns; 1-H,=0.05; tg,=40ns; tg, =10 ms

t,=t,+A-H,)) ty,, +(1-H,) L, =
—2.10°[s]+0,05-40-10°[s]+0,5-10° -10-1073[s] =
=2.10"°[s]+2-10°[s]+5-108[s] =
—=2.10°[s]+2-10°[s]+50-10°[s] =54 -10"°[ns]| = 54|ns]
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Memory hierarchy — case: 3-level memory hierarchy

1. Let the probability of hit in main memory be Hj = 0.999995 = 99.9995%,
probability of miss in the main memory is 1-H, = 1 - 0.999995 =
=0.000005 = 0.0005% or 1-H,=0.5*10-°

top=2ns; 1-H,=0.05; tg,=40ns; tg, =10 ms

t, =l‘a',,+(1—H',))-ZL,5,g+(1—Hg)-l‘,5,,7 =

=210

—2.107°

.5_
=2.107°[s

5]+2-10°[s]+50-10°[s]=54-10"°[ns]| = 54|ns]

+0,05-40-10°[s]+0,5-10°-10-10%[s] =
+2-10°[s]+5-107%[s] =

The average access time of the entire hierarchy in this case is 54 ns, which is
worse than the access time of main memory (40 ns). Such a memory hierarchy
is solving the problem of its storage capacity, but it deteriorates the access time
and therefore completely useless. The solution is to increase the probability of a
hit in main memory.
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Memory hierarchy — case: 3-level memory hierarchy

2. |If the probability of hit in the main memory increases from 99.9995%
t0 99.9999% = Hj = 0.999999 = 99.9999%

So the probability of miss in the main memory is 1-H, = 0.000001 = 0.0001%
or 1-H; = 0.1 * 10 -> (in previous example 1-H, = 0.5 * 10 -°)

while other data remain unchanged:

top=2ns; 1-H, = 0.05; tg; = 40 ns; tg, = 10 ms
t,=t,+A-H,)) ty,, +(1-H,) L, =
—2.10°[s]+0,05-40-10°[s]+0,1-10°-10-103[s] =
—=2.107°[s]+2-10°[s]+1-10°%[s] =
=2.10°[s]+2-10°[s]+10-10°[s]|=14-10"°|ns | = 14|ns]
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Memory hierarchy — case: 3-level memory hierarchy

2. |If the probability of hit in the main memory increases from 99.9995%
t0 99.9999% = Hj = 0.999999 = 99.9999%

So the probability of miss in the main memory is 1-H, = 0.000001 = 0.0001%
or 1-H; = 0.1 * 10 -> (in previous example 1-H, = 0.5 * 10 -°)

while other data remain unchanged:

top=2ns; 1-H, = 0.05; tg; = 40 ns; tg, = 10 ms
t,=t,+A-H,)) ty,, +(1-H,) L, =
—2.10°[s]+0,05-40-10°[s]+0,1-10°-10-103[s] =
—=2.107°[s]+2-10°[s]+1-10°%[s] =
=2.10°[s]+2-10°[s]+10-10°[s]|=14-10"°|ns | = 14|ns]

If the probability of miss in the main memory is reduced from 0.5 * 10 -°
to 0.1 * 10 - (probability of hit is increased), the average access time
is reduced from 54 ns to 14 ns.
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Case: Virtual memory in Win10 (SLO)

B Sisternske informacije

Datoteka Uredi Pogled Pomed

Pregled sistema Element Vrednost
e Strojna sredstva Abstrakeijska raven strojne opreme Razlifica = "10.0.17134.471"
i#-Komponente 1l |me yporabnika ROBI_IDEAPAD710\Robi
&-Programsko %O-ILE..- o6 S\ [ e e e e e e e e e e e BT RREGMRPRT STANdErdNT CaS
1 MName3cen fizitni pomnilnik (RAM) 8,00 GB o )
1 s L I (B Upravitelj opravil — O
aj fizicnega pomnilni i
I Skupaj f gap Inika 7,93 GB I
I RazpaloZljiv fiziéni pomnilnik 1,61 GB j Detoteka  Moinosti Pogled
Skupa) navideznega pomnilni 194 GB rocesi  UEinkovitost delovanja odovina aplikacije  Zagen orabniki  Podrobnosti Storitve
1 kupaj navideznega pomnilnika : I Procesi  Uinkovitost del Zgod plikacije Zagon Uporabniki Podrob 5
: RazpoloZljiv navidezni pomnilnik 3,10 GB I
~
Prostor ostranjevalne datoteke 11,5 GB CPE H -
N e o e o e et e e s e m ? Pomnilni 8,0 GB DDR3
= = 0 sranjevama datoteka C:\pagEﬁIe.sy's . 3% 0,95 GHz !
< Uporaba pomnilnika 7.9 GE
Pomnilnik
58/7,9 GB (71%)
Disk 0 (D: E)
0% &0 sekund 0
Sestava pomnilnika
Disk 1 (C)
0%
ks G ',_____________________________..\
O‘;ES (@) 1 V uporabi (stisnjen) Ma voljo Hitrost: 1600 MHz =
) 1 5,6 GB (90? MB) 2,3 GB U.porabI.J.ene refe: 2od4 I
@ Resource Monitor 1 Dimenzije: SODIMM
. . Ethernet | Uvelavljene Predpomnjenc  Rezervirano za strojno opremo: 75,6 MB I
File Monitor HE|F| Povezava ni vzpostan || 16 0/19 AGB 22GB I
o I n I !
Oveview CPU  Memory Disk  Network P
Physical Me [ 5826 MB In Use M 2256 MEB Available [ A

[ Hardware Reserved B in use I madified B standby [ ]Free
T& MB 5826 MB 34 MB 2084 MEB 172 MB

Available 2256 MB
Cached 2118 ME
Tatal 2116 MEB
Installed 2192 ME




" M

m Thanks for attention and best wishes for the exams !

m Web pages: http://ucilnica.fri.uni-lj.si
http://www.fri.uni-lj.si/

m Email: rozman@fri.uni-lj.si

m Literature:

0 Dusan Kodek: ARHITEKTURA IN ORGANIZACIJA RACUNALNISKIH
SISTEMOV, Bi-TIM, 2008

O David A. Patterson, John L. Hennesy: COMPUTER ORGANIZATION AND
DESIGN, ARM Edition, Morgan Kaufmann, Elsevier, 2017

O Andrew S. Tanenbaum: STRUCTURED COMPUTER ORGANIZATION,
Sixth Edition, Pearson Prentice Hall, 2013

O Slides on http://ucilnica.fri.uni-lj.si
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