Odločitvena drevesa
Section outline
-
V tem poglavju ne govorimo o odločitvenih drevesih kot jih poznate iz strojnega učenja. Odločitvena drevesa (kot jih poznajo izven umetne inteligence, npr. v ekonomiji) so grafični pripomoček za lažjo predstavo o odločitvenem problemu in možnostih ter izhodih, ki so nam na voljo. Drevesna struktura omogoča lažji pregled alternativ.
Poznamo tri tipe vozlišč: odločitvena vozlišča (označena s kvadratom), verjetnostna vozlišča (označena s krogom) in liste v drevesu (označene s trikotnikom). Odločitvena vozlišča predstavljajo trenutek v procesu odločanja, ko sami sprejemamo odločitev po kateri poti naprej. Verjetnostna vozlišča so vozlišča kjer na odločitev nimamo vpliva, veje, ki takemu vozlišču sledijo imajo pripisane verjetnosti s katero se bodo zgodile. Seveda se v konkretnem primeru zgodi le ena od vej. Listi predstavljajo zaključek poti skozi drevo in imajo pripisan izhod, velikokrat je to finančna vrednost, lahko pa je seveda karkoli drugega kar nam je pomembno.
Vsaka pot od korena do nekega lista predstavlja eno možnost, ki se lahko zgodi. Z malo verjetnostnega računa lahko izračunamo najbolj ugodno možnost za nas. Začnemo od listov in računamo proti korenu drevesa, pri tem tipično uporabljamo pričakovano vrednost (angl. expected value) in se obnašamo kot da se bo situacija mnogokrat ponovila (četudi ta predpostavka ne drži nujno za dani primer).
Odločitvena drevesa lahko na enostaven način upoštevajo tudi rizik. Dostikrat namreč velja, da nam je bolj sprejemljiva manj donosna, a obenem varna (pred morebitno izgubo) možnost, kot pa bolj donosna, a hkrati bolj riskantna možnost. Vrednosti (surove) v listih preprosto pretvorimo v koristnosti in nadalje računamo s koristnosti povsem enako kot prej s surovimi vrednostmi.
-
Прикачено 25/11/2020 17:15
-
Прикачено 25/11/2020 17:16
-
Прикачено 8/12/2020 16:57