Linearna regresija
Section outline
-
Problemom, kjer je cilj iz atributnega opisa primera napovedati vrednost ciljne zvezne spremenljivke (imenujemo jo tudi razred), pravimo regresijski problemi. Iz učnih podatkov, ki tokrat poleg atributnega opisa vsebujejo tudi podatek o razredu, tu gradimo regresijske napovedne modele. Pri predmetu se bomo z večino tehnik regresijskega modeliranja le seznanili. Pobližje spoznamo le linearno regresijo. Gre za sicer zelo enostaven model, ki pa ima skoraj vse, kar imajo veliki. Najprej je tu struktura modela, kjer pri linearni regresiji povemo, da gre za uteženo vsoto vrednosti atributov, kjer pravimo utežem parametri modela in jih moramo določiti iz podatkov. Določimo jih tako, da minimizirajo neko kriterijsko funkcijo. Pri predavanji to definiramo kot povprečno vrednost kvadrata napake. Kot postopek optimizacije, se pravi, iskanja optimalne vrednosti parametrov glede na izbrano kriterijsko funkcijo, uporabimo metodo gradientnega spusta. Literatura - Linearna regresija (zapiski predavatelja)
Predavanja- Regresija - primeri
- Kriterijska funkcija
- Parcialni odvod kriterijske funkcije
- Vektorsko-matrični zapis
- Gradientni sestop
Koda s predavanj
Drugi viri