Skip to main content
Učilnica FRI 24/25
  • Home
  • More
Close
Toggle search input
English ‎(en)‎
English ‎(en)‎ Slovenščina ‎(sl)‎ Македонски ‎(mk)‎ Русский ‎(ru)‎ 한국어 ‎(ko)‎
You are currently using guest access
Log in
Učilnica FRI 24/25
Home
Expand all Collapse all
  1. IntSys
  2. General
  3. Literature and readings

Literature and readings

Completion requirements
The main literature for machine learning:
  • James, G., Witten, D., Hastie, T., Tibshirani, R. and Taylor, J., 2023. An Introduction to Statistical Learning: With Applications in Python. New York: Springer. Freely available at https://www.statlearning.com/  (the same book exists for R)

Further readings:

  • Kevin P. Murphy: Probabilistic Machine Learning: An Introduction. MIT Press, 2022
  • Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. Springer, Berlin. (freely available)
  • Jurafsky, Daniel and James, Martin (2024): Speech and Language Processing, 3rd edition in progress, freely available
  • Richard S. Sutton and Andrew G. Barto: Reinforcement Learning, An Introduction, 2nd edition, MIT Press, 2018, freely available

  • Kevin P. Murphy: Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023

    • Reeves - 2010 - Genetic Algorithms.pdf Reeves - 2010 - Genetic Algorithms.pdf
You are currently using guest access (Log in)
Get the mobile app
Powered by Moodle
Obvestilo o avtorskih pravicah