
April 2020 AN4760 Rev 3 1/95

1

AN4760
Application note

Quad-SPI interface on STM32 microcontrollers and
microprocessors

Introduction

In order to manage a wide range of multimedia, richer graphics and other data-intensive
content, embedded applications evolve to offer more sophisticated features. These
sophisticated features require extra demands on the often limited micocontroller (MCU) and
microprocessor (MPU) on-chip memory.

The STM32 MCUs and MPUs will be referred to as STM32 devices in this document. The
devices that are concerned are listed in Table 1: Applicable products

External parallel memories are used to extend the STM32 devices on-chip memory and
solve the memory size limitation. Usually this action compromises an increase in the pin
count and implies a more complex design.

To face these requirements, the STM32 devices embed an external memory interface
named Quad-SPI (see more details on Table 2 on page 9). This interface allows the
connection of external compact-footprint Quad-SPI high-speed memories.This Quad-SPI
interface is used for data storage such as images, icons, or for code execution.

This application note describes the Quad-SPI interface on the STM32 devices and explains
how to use the module to configure, program, and read external Quad-SPI memory. It
describes some typical use cases to use the Quad-SPI interface based on some software
examples from the STM32Cube firmware package and from the STM32F7 Series
application notes.

For additional more detailed information about the products listed in the table below, refer to
the corresponding datasheets and reference manuals available from the STMicroelectronics
web site www.st.com.

Table 1. Applicable products

Type Products, lines and series

Microcontrollers

STM32F7 Series, STM32L4 Series

STM32F412, STM32F413/423, STM32F446, STM32F469/479,
STM32H743/753, STM32H750 Value line
STM32L4R5/S5, STM32L4R7/S7, STM32L4R9/S9

STM32WB55CC, STM32WB55CE, STM32WB55CG, STM32WB55RC,
STM32WB55RE, STM32WB55RG, STM32WB55VC, STM32WB55VE,
STM32WB55VG, STM32WB35CC, STM32WB35CE, STM32WB35CZ

Microprocessors STM32MP151x, STM32MP153x, STM32MP157x devices

www.st.com

http://www.st.com

Contents AN4760

2/95 AN4760 Rev 3

Contents

1 General information . 8

2 Overview . 8

2.1 QUADSPI availability and features across STM32 families 8

2.2 Quad-SPI benefits against classic SPI and parallel interfaces 10

2.2.1 Main benefits of STM32 embedded Quad-SPI interface 10

2.3 QUADSPI in a smart architecture .11

2.3.1 System architecture: STM32L4 Series . 12

2.3.2 System architecture: STM32F4 Series . 13

2.3.3 System architecture: STM32F7 Series . 14

2.3.4 System architecture: STM32H7 Series . 15

2.3.5 System architecture: STM32WB35xx and STM32WB55xx devices . . . 16

3 Quad-SPI interface description . 17

3.1 Flexible frame format . 17

3.1.1 Instruction phase . 17

3.1.2 Address phase . 19

3.1.3 Alternate-byte phase . 19

3.1.4 Dummy-cycle phase . 21

3.1.5 Data phase . 21

3.2 Multiple hardware-configurations . 23

3.2.1 Single-SPI mode (classic SPI) . 23

3.2.2 Dual-SPI mode . 24

3.2.3 Quad-SPI mode . 25

3.2.4 Dual-Flash memory mode . 25

3.2.5 DDR and SDR mode . 29

3.3 Three operating modes . 29

3.3.1 Indirect mode . 29

3.3.2 Status-flag polling mode . 30

3.3.3 Memory-mapped mode . 30

3.4 Special features . 32

3.4.1 Send instruction only-once (SIOO) . 32

3.4.2 Delayed data sampling . 32

3.4.3 Timeout counter . 33

AN4760 Rev 3 3/95

AN4760 Contents

4

3.4.4 Additional status bits . 33

3.4.5 Busy bit and abort functionality . 33

3.4.6 4-byte address mode . 34

3.4.7 QUADSPI and delay block in STM32H7 Series 35

3.5 Interrupts and DMA usage . 36

3.5.1 Interrupts usage . 36

3.5.2 DMA usage . 36

3.6 Low-power modes . 39

4 QUADSPI configuration . 40

4.1 GPIOs configuration . 40

4.1.1 GPIOs configuration using STM32CubeMX tool 40

4.2 QUADSPI peripheral configuration and clock . 43

4.2.1 QUADSPI peripheral configuration (QUADSPI_CR register) 43

4.2.2 Quad-SPI Flash memory parameters configuration
(QUADSPI_DCR register) . 44

4.2.3 QUADSPI and MPU configuration . 46

4.2.4 Quad-SPI memory device configuration . 46

4.2.5 Starting a communication (QUADSPI_CCR register) 47

4.3 Hardware considerations . 48

4.3.1 Pull-up resistance . 48

4.3.2 Good PCB design allows maximum QUADSPI speed 48

4.3.3 Chip-select high time (CSHT) . 48

4.3.4 CKMODE . 49

4.3.5 Some considerations when using QUADSPI in classical SPI mode . . . 49

5 Programming Quad-SPI Flash memory . 50

5.1 Programming code or data for an end application 50

5.1.1 Programming Quad-SPI Flash memory using
the STM32 ST-LINK utility . 51

5.1.2 Programming Quad-SPI Flash memory using IDE 55

5.2 Storing and erasing data on the fly during running application 59

5.2.1 Storing data . 59

5.2.2 Erasing data . 60

6 QUADSPI application examples . 62

6.1 Reading data from Quad-SPI memory: graphical application 62

Contents AN4760

4/95 AN4760 Rev 3

6.1.1 Frame buffer content generation from Quad-SPI memory 62

6.1.2 Displaying images directly from the Quad-SPI memory 65

6.2 Executing from external Quad-SPI memory: extend internal memory size 67

6.2.1 Configuring Quad-SPI in Memory-mapped mode during system
initialization . 69

6.2.2 Placing application code in external Quad-SPI memory 73

6.3 Storing (programming) data on the fly during a running application 79

6.3.1 QUADSPI indirect write: programming Quad-SPI memory using DMA . 79

6.3.2 QUADSPI indirect write: programming Quad-SPI memory using
interrupts . 82

6.4 Erasing-data example . 84

6.5 Hardware implementation example . 85

7 Performance and power . 87

7.1 How to get the best performances . 87

7.1.1 Write performance . 87

7.1.2 Read performance . 87

7.2 Decreasing power consumption . 90

7.2.1 Use timeout counter . 90

7.2.2 Put the Quad-SPI memory in Deep power-down mode 90

7.2.3 Quad-SPI Flash memories supporting DPD mode 91

8 Supported devices . 92

9 Conclusion . 93

10 Revision history . 94

AN4760 Rev 3 5/95

AN4760 List of tables

5

List of tables

Table 1. Applicable products . 1
Table 2. QUADSPI availability and features across STM32 families . 9
Table 3. Benefits of using STM32 Quad-SPI interface . 10
Table 4. Instruction phase configurations . 18
Table 5. Address-phase configurations . 19
Table 6. Alternate-byte phase configurations . 20
Table 7. Data phase configuration versus Quad-SPI functional modes . 22
Table 8. Hardware configurations versus used GPIO number . 23
Table 9. Dual-Flash memory hardware configurations . 27
Table 10. Additional status bits . 33
Table 11. BUSY bit reset in different Quad-SPI modes . 34
Table 12. Address mode versus maximum addressable memory space . 35
Table 13. QUADSPI interrupts summary . 36
Table 14. DMA requests mapping and transfer directions versus STM32 series 37
Table 15. Execution performances versus configuration . 78
Table 16. Different STM32 boards embedding Quad-SPI Flash memory . 85
Table 17. Document revision history . 94

List of figures AN4760

6/95 AN4760 Rev 3

List of figures

Figure 1. System architecture: STM32L4 Series . 12
Figure 2. System architecture: STM32F4 Series . 13
Figure 3. System architecture: STM32F7 Series . 14
Figure 4. System architecture: STM32H7 Series. 15
Figure 5. System architecture:STM32WB35xx and STM32WB55xx . 16
Figure 6. Reading sequence in quad I/O SDR. 17
Figure 7. Alternate-byte phase: sending a nibble in dual-SPI mode . 20
Figure 8. Dummy-cycle: IO2 maintained low and IO3 maintained high by hardware 21
Figure 9. Hardware configuration: Single-SPI mode . 24
Figure 10. Hardware configuration: dual-SPI mode. 24
Figure 11. Hardware configuration: Quad-SPI mode. 25
Figure 12. Read sequence in dual-Flash memory Quad I/O SDR mode. 26
Figure 13. Executing non-sequential code from Quad-SPI . 31
Figure 14. Executing non-sequential code from QUADSPI with SIOO enabled 32
Figure 15. QUADSPI and delay block . 35
Figure 16. QUADSPI and master DMA . 38
Figure 17. STM32CubeMX: QUADSPI GPIOs configuration. 40
Figure 18. STM32CubeMX: PF8 pin configuration to QUADSPI_BK1_IO0 alternate function 41
Figure 19. STM32CubeMX: Dual-Flash memory QUADSPI with chip-select 1 configuration 42
Figure 20. STM32CubeMX: enabling QUADSPI global interrupt. 42
Figure 21. QUADSPI clock configuration on QUADSPI_CR register. 43
Figure 22. STM32CubeMX: quadspi_ker_ck source clock configuration in

STM32H7 Series . 44
Figure 23. STM32CubeMX: quadspi_ker_ck source clock selection in

STM32H7 Series . 44
Figure 24. STM32CubeMX: QUADSPI peripheral configuration . 45
Figure 25. Write enable sequence (command 0x06) . 46
Figure 26. Connecting chip-select to a pull-up resistance . 48
Figure 27. Chip select high time: CSHT = two clock cycles. 49
Figure 28. QUADSPI in classical SPI mode frame example . 49
Figure 29. Programming Quad-SPI memory through debug interface. 51
Figure 30. STM32 ST-LINK utility: adding Quad-SPI Flash memory loader . 52
Figure 31. STM32 ST-LINK utility: selecting Quad-SPI Flash memory loader. 52
Figure 32. STM32 ST-LINK utility: error message . 52
Figure 33. STM32 ST-LINK utility: programming Quad-SPI Flash memory. 53
Figure 34. STM32 ST-LINK utility: selecting HEX file for programming. 53
Figure 35. STM32 ST-LINK utility: erasing sectors . 54
Figure 36. Adding Quad-SPI Flash memory loader to Keil MDK-ARM project 56
Figure 37. Adding Quad-SPI Flash memory loader to Keil MDK-ARM project 57
Figure 38. Selecting Quad-SPI Flash memory programming algorithm. 57
Figure 39. Quad-SPI Flash memory loader programming algorithm configuration 58
Figure 40. Quad I/O page program sequence (command 0x38) . 59
Figure 41. Read status register sequence (command 0x05) . 60
Figure 42. Sector erase sequence. 61
Figure 43. Example: full chip-erase sequence. 61
Figure 44. QUADSPI usage in a graphical application . 63
Figure 45. DMA2D reading images from Quad-SPI to build frame buffer content 65
Figure 46. LTDC reading an image directly from Quad-SPI memory . 66

AN4760 Rev 3 7/95

AN4760 List of figures

7

Figure 47. Project configurations: executing code from Quad-SPI Flash memory 68
Figure 48. Changing QUADSPI configuration in the project settings. 69
Figure 49. Quad-SPI Flash memory connection in STM32756-EVAL board. 70
Figure 50. 6_1-Quad-SPI_rwRAM-DTCM project configuration: code and data in

Quad-SPI memory . 74
Figure 51. 6_2-Quad-SPI_rwRAM-DTCM project configuration: only code in Quad-SPI memory . . . 76
Figure 52. Indirect write mode: programming Quad-SPI memory using DMA. 80
Figure 53. Indirect write mode: programming Quad-SPI memory using interrupt 82
Figure 54. Quad-SPI memory connection on the STM32F746G-DISCO discovery board 86
Figure 55. Quad-SPI memory connection on the STM32L476G-EVAL board. 86
Figure 56. Deep power-down (DPD) sequence (command B9). 90
Figure 57. Release from deep power-down (RDP) sequence (command AB) 91

General information AN4760

8/95 AN4760 Rev 3

1 General information

This document applies to STM32 Arm®-based(a) microcontrollers and microprocessors.

2 Overview

The Quad-SPI is a serial interface that allows the communication on four data lines between
a host (STM32) and an external Quad-SPI memory. The QUADSPI supports the traditional
SPI (serial peripheral interface) as well as the dual-SPI mode which allows to communicate
on two lines. QUADSPI uses up to six lines in quad mode: one line for chip select, one line
for clock and four lines for data in and data out.

This interface is integrated on the STM32 devices to fit memory-hungry applications, to
simplify PCB (printed circuit board) designs and to reduce costs.

2.1 QUADSPI availability and features across STM32 families

All STM32 devices shown in the table below have mainly the same QUADSPI features.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN4760 Rev 3 9/95

AN4760 Overview

94

Table 2. QUADSPI availability and features across STM32 families

Products
Maximum speed (MHz)(1)

Dual-
Flash

memory

FIFO size

(byte)

Max addressable space (2)

SDR DDR
Memory
mapped

Indirect mode

STM32F412 line
100 80

Yes 32

256 Mbytes 4 Gbytes

STM32F413/423 line(3)

STM32F446 line(4)

90
60

STM32F469/479 line

80

STM32F730xx devices
STM32F7x2 line(4)

108

STM32F750xx
STM32F7x3
STM32F7x5
STM32F7x6
STM32F7x7
STM32F7x8
STM32F7x9

STM32H743/753
STM32H750 Value line

133 100

STM32L471xx
STM32L412xx
STM32L422xx
STM32L432xx
STM32L442xx
STM32L475xx
STM32L476xx
STM32L486xx

60

48

No

16STM32L431xx
STM32L451xx
STM32L452xx
STM32L462xx
STM32L4x3(5)

Yes

STM32L496xx
STM32L4A6xx

STM32WB35xx
STM32WB55xx

50 No

STM32L4R5/S5
STM32L4R7/S7

STM32L4R9/S9(6)
86 60 Yes

32

STM32MP1 166 90 Yes

1. Maximum QUADSPI speed from datasheet. For more details on the QUADSPI maximum speed refer to the relevant device
datasheet.

2. 32-bits address mode should be used to reach 256 Mbytes in Memory-mapped mode and 4 Gbytes in Indirect mode.

3. UFQFPN48 does not support Quad-SPI.

4. LQFP64 supports only Bank1 and Single-SPI/Dual-SPI only.

5. For this set of products, Dual-Flash mode is supported only with LQFP100 and UFBGA100 packages.

Overview AN4760

10/95 AN4760 Rev 3

2.2 Quad-SPI benefits against classic SPI and parallel interfaces

The Quad-SPI brings more performance in terms of throughput compared to classical SPI.
The classical SPI uses only one data line while the Quad-SPI uses four data lines which
multiplies the data throughput by almost four times.

Compared to FMC (flexible memory interface) and other parallel interfaces, Quad-SPI
permits the connection of a lower cost external Flash memory to small packages, reducing
the PCB area, simplifying the PCB design and reducing the GPIOs (general-purpose
input/output) usage. In Quad-SPI mode, only six GPIOs are used: four lines for data plus
one line for clock and another for chip select. In Dual-Flash Quad-SPI mode only 10 GPIOs
are used, amongst which eight lines are for data.

2.2.1 Main benefits of STM32 embedded Quad-SPI interface

The table below summarizes the major advantages of using STM32 embedded Quad-SPI
interface:

6. This set of products contains two Octo-SPI interfaces, each one of them can connect one or two Quad-SPI memories with
Single-Flash or Dual-Flash modes.

Table 3. Benefits of using STM32 Quad-SPI interface

Benefits Comments

Low pin-count

Supports single, dual and Quad-SPI memories.

Uses six pins in Quad-SPI mode and four pins for single or dual-SPI.

Saves GPIOs to be used for other purposes.

Easier PCB design Allows easier and faster PCB design thanks to a reduced pin count.

Save space for smaller
size applications

Can be used in small size applications due to small footprint Quad-SPI
memories.

Save cost

Easier and faster design permits a lower development cost.

Lower PCB cost, as it is possible to reduce PCB layers due to low pin-
count.

Low cost memory solution.

Executable

Extends limited on-chip Flash memory allowing Quad-SPI memory to be
seen as an internal memory.

Allows code execution (XIP mode) from Quad-SPI Flash memory.

Supports SIOO mode also named Continuous read mode by some
memory manufacturers (see Section 3.4.1: Send instruction only-once
(SIOO) on page 32) for higher execution performance.

Extended size for data
storage

Memory-mapped mode allows Quad-SPI memory to be accessed
autonomously by any AHB (advanced high-performance) or AXI
(advanced extensible Interface protocol) master.

32-bits address mode enables the possibility to address up to four
Gbytes Quad-SPI memory size.

Dual-Flash memory mode enables the use of two Quad-SPI Flash
memories to double storage size(1).

AN4760 Rev 3 11/95

AN4760 Overview

94

2.3 QUADSPI in a smart architecture

The Quad-SPI interface is mapped on a dedicated layer on AHB allowing it to be accessible
as an internal memory thanks to the Memory-mapped mode. In addition, the QUADSPI is
integrated in a smart architecture which allows the following features:

• Masters to access the external Quad-SPI memory without any CPU intervention.
• Masters to read data from Quad-SPI memory even in Sleep mode when the CPU is

stopped thanks to the STM32 smart architecture.

• CPU as a master can access QUADSPI and execute code from the memory.

• GP DMA to do transfer from Quad-SPI to other internal or external memories.

• Graphical DMA2D to directly build RAM video frames using Quad-SPI Flash.

High performances

Throughput is multiplied by four versus traditional SPI.

The DDR mode doubles throughput.

The Dual-Flash memory mode doubles throughput.

Perfect for graphical applications.

Multiple memory solutions

There are volatile Quad-SPI SRAM (static random-access memory)
available from Microchip, ON Semiconductor and others.

Available non-volatile Quad-SPI Flash memories.

NOR, NAND.

Supports any Quad-SPI
memories available in the
market

Its fully configurable and flexible frame format permits to support almost
all Quad-SPI devices available on the market.

Growing amount of
manufacturers

Spansion, Windbond, Micron, Macronix, ONSemiconductors, Cypress,
APmemory and ISSI among others.

Huge investment on higher densities Quad-SPI Flash memories such as
NAND.

1. 4 Gbytes maximal size can be reached with the 32-bits address mode.

Table 3. Benefits of using STM32 Quad-SPI interface (continued)

Benefits Comments

Overview AN4760

12/95 AN4760 Rev 3

2.3.1 System architecture: STM32L4 Series

The STM32L4 Series system architecture consists mainly of a 32-bit multilayer AHB bus
matrix that interconnects multiple masters to multiple slaves.

The QUADSPI can be accessed by relevant masters like the Arm® Cortex®-M4 either
through
S-Bus or through I-bus and D-bus when remap is enabled. QUADSPI is also accessible by
DMA1 and DMA2.

Enabling physical remap over I-bus and D-bus boosts execution performances for the
Cortex®-M4.

The access to the QUADSPI can be either a registers access or a memory-mapped region
access:

• The registers access can be done by the Cortex®-M4 for registers configuration or data
transfer. The register access can be done also by the DMA1 and DMA2 for data
transfer.

• The memory mapped region access can be done by the Cortex®-M4 for code and data
fetch. The memory-mapped region can also be accessed by the DMA1, DMA2 and
DMA2D for data transfer.

The figure below shows a QUADSPI interconnection in the STM32L4 Series system.

Note: DMA2D is available only in STM32L496xx and STM32L4A6xx devices.

Figure 1. System architecture: STM32L4 Series

ACCEL

ICode

DCode

Bus mutliplexer

32-bit AHB bus

DMA2D

QUADSPI registers
access

Flash
memory

SRAM1

SRAM2

AHB1 peripheral

AHB2 peripheral

Registers

FMC 3

2

For STM32L471xx, STM32L475xx, STM32L476xx and STM32L486xx devices, QUADSPI and FMC share the same AHB bus on the bus matrix

DMA2D is only available on STM32L496xx and STM32L4A6xx devices

FMC is available only on STM32L47xxx and STM32L4x6xx devices

1

2

3

Masters accessing
QUADSPI

Quad-SPI interface

I-
B

us

D
-B

us

S
-B

us

4 4

44

When remapped4

QUADSPI memory-
mapped region access

Cortex-M4 DMA1 DMA2

1
Memory-mapped region

AN4760 Rev 3 13/95

AN4760 Overview

94

2.3.2 System architecture: STM32F4 Series

The STM32F4 Series system architecture consists mainly of a 32-bit multilayer AHB bus
matrix that interconnects multiple masters to multiple slaves (refer to cover page for detail
on applicable products).

The external Quad-SPI memory can be accessed by the Cortex®-M4 through the S-bus.
The QUADSPI is also accessible by all the masters on the AHB bus matrix such as DMA1,
DMA2, USB OTG HS, MAC Ethernet, LTDC and DMA2D. This accessibility enables an
efficient data transfer (like images for graphical applications).

The access to the QUADSPI can be either a registers access or a memory-mapped region
access:

• The registers access can be done by the Cortex®-M4 through S-Bus for registers
configuration and data transfer. The register access can be done also GP DMA2 for
data transfer.

• The memory-mapped region access can be done by the Cortex®-M4 through S-Bus for
code and data fetch.The memory-mapped region access can be done also by the
GP DMA1, GP DMA2, MAC Ethernet, USB OTG HS, LTDC and DMA2D for data
transfer.

The figure below shows a QUADSPI interconnection in the STM32F4 Series system.

Note: For MAC Ethernet, USB OTG HS, LTDC and DMA2D refer to the applicable product.

Figure 2. System architecture: STM32F4 Series

For STM32F412, STM32F413/423 and STM32F446 lines, QUADSPI and FMC share the same AHB bus on the bus matrix

Available only on STM32F469/479 line devices

USB OTG HS is available only in the STM32F446 and STM32F469/479 lines

1

2

3

A
R

T

I-b
us

D
-b

us

S
-b

us

D
M

A
_P

I

D
M

A
_M

E
M

1

D
M

A
_M

E
M

2

D
M

A
_P

2

64-Kbyte
CCM data

RAM

Bus matrix-S

2

Cortex-M4 G
P

D
M

A
1

G
P

D
M

A
2

M
A

C

Et
he

rn
et

U
SB

O

TG
 H

S

LD
TC

Chrom-
ART

(DMA2D)

2 2 2

Flash
memory

SRAM1
SRAM2
SRAM3

AHB2 peripheral
FMC

AHB1 peripheral

3

Masters accessing
QUADSPI

Quad-SPI interface

Bus mutliplexer

32-bit AHB bus
APB1

APB2
QUADSPI registers
access

QUADSPI
memory-mapped
region access

1
Registers

Memory-mapped region

Overview AN4760

14/95 AN4760 Rev 3

2.3.3 System architecture: STM32F7 Series

The main system architecture is based on two subsystems, an AXI (advanced extensible
interface) to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol and a multi-
AHB bus matrix.

The multi AHB bus matrix interconnects multiple masters and multiple slaves. There are four
AXI bus accesses; the QUADSPI is accessible through the second access. This access
allows the Cortex®-M7 to perform a memory-mapped region access in order to fetch code or
data. This access also allows the Cortex®-M7 to perform a register access for QUADSPI
registers configuration or for data transfer.

The QUADSPI is mapped on a dedicated layer on the AHB Bus matrix allowing the
Cortex®-M7 to benefit from L1-Cache when accessing the cached data with 0-wait states.

QUADSPI is also accessible by all masters on AHB bus matrix. Registers accesses can be
performed by GP DMA2 for data transfer. Memory-mapped region access can be performed
by GP DMA1, MAC Ethernet, USB OTG HS, LTDC and DMA2D. This accessibility enables
an efficient data transfer (like images for graphical applications).

The following figure shows the QUADSPI interconnection in the STM32F7 Series system.

Note: For MAC Ethernet, USB OTG HS, LTDC and DMA2D refer to the applicable product.

Figure 3. System architecture: STM32F7 Series

Bus mutliplexer

32-bit AHB bus

Mac Ethernet , LCD-TFT and DMA2D are not available on STM32F72xxx and STM32F73xxx devices.1

A
R

T
Arm Cortex -M7

AXIM AHBP

L1-cache G
P

D
M

A
1

M
A

C

Et
he

rn
et

U
SB

O

TG
 H

S

LD
TC

D
M

A
_P

1

D
M

A
_M

E
M

1

D
M

A
_M

E
M

2

D
M

A
_P

2

Flash
memory

SRAM1
SRAM2

AHB2 peripheral
FMC

AHB1 peripheral

D
M

A
2D

AHBS
ITCM

DTCM RAM
ITCM RAM

DTCM

APB1

APB2

64-bit AHB
64-bit bus matrix

1 1 1

32-bit bus matrix-S

64-bit AHB bus

Masters accessing
QUADSPI

Quad-SPI interface

QUADSPI registers
access

QUADSPI
memory-mapped
region access

AXI to muti AHB

G
P

D
M

A
2

Registers
Memory-mapped region

AN4760 Rev 3 15/95

AN4760 Overview

94

2.3.4 System architecture: STM32H7 Series

The main system architecture is based on three domains: D1,D2 and D3. Each domain
contains a bus matrix that allows a connection between multiple masters and multiple
slaves. A 64-bit AXI bus matrix for domain D1 and a 32-bit AHB bus matrix for each of the
domains D2 and D3.

The three domains are connected to each other with the interdomains AHB buses which
allow masters from a certain domain to access slaves from an other domain.

The QUADSPI is connected to the D1 domain and can be accessed through:

• A 64-bit AXI bus connected directly to the AXI bus matrix. It allows multiple masters to
perform a memory-mapped region access for code and data fetch from D1 domain like
the Cortex®-M7. It allows also data transfer from D1 domain (SDMMC1, MDMA,
DMA2D and LTDC) and from the D2 domain (DMA1 and DMA2).

• A 32-bit AHB bus accessible through AHB3. It allows the Cortex®-M7 and the MDMA to
perform a register access for data transfer or registers configuration.

The following figure shows the QUADSPI interconnection in the STM32H7 Series system.

Figure 4. System architecture: STM32H7 Series

Mac Ethernet , LCD-TFT and DMA2D are not available on STM32F72x and STM32F73x devices

M
A

C

Et
he

rn
et

AHBS

DMA2D

ITCM

DTCM
AHBP

D2-to-D1 AHB

64-bit AXI bus matrix
D1 domain

32-bit AHB bus matrix
D2 domain

FMC

Memory-mapped region

AXI SRAM

FLASH B

FLASH A

Registers
APB3

D
M

A
1_

M
E

M

D
M

A
1_

P
E

R
IP

H

D
M

A
2_

M
E

M

D
M

A
2_

P
E

R
IP

H

MDMASDMMC1 LTDC

DMA1 DMA2 SD
M

M
C

2

U
SB

 H
S1

U
SB

 H
S2

D1-to-D2 AHB

AHB3

1

SRAM1

SRAM2

SRAM3

AHB2

AHB1

APB1

APB2

BDMA

SRAM4

Backup SRAM
32-bit AHB bus matrix

D3 domain

D2-to-D3 AHB

D
1-

to
-D

 A
H

B

1

Cortex-M7
I$ D$

AXI
AHB

APB

TCM

APB4AHB4

Bus mutliplexer
64-bit bus width 32-bit bus width

Masters not having
access to QUADSPI

Masters accessing
QUADSPI

Quad-SPI interface MDMA

QUADSPI registers access

QUADSPI memory-mapped region access

Overview AN4760

16/95 AN4760 Rev 3

2.3.5 System architecture: STM32WB35xx and STM32WB55xx devices

The STM32WB35xx, STM32WB55xx devices system architecture consists mainly of a 32-
bit multilayer AHB bus matrix that interconnects multiple masters and slaves. The QUADSPI
is mapped on a dedicated layer on the AHB bus matrix.

The QUADSPI is accessed by relevant masters like the Cortex®-M4 either through S-Bus or
through I-bus and D-bus when remap is enabled. The QUADSPI is also accessible by
DMA1 and DMA2.

Enabling physical remap over I-bus and D-bus boosts execution performances for the
Cortex®-M4.

The access to the QUADSPI can be either a registers access or a memory-mapped region
access:

• The registers access can be done by the Cortex®-M4 for registers configuration or data
transfer. The register access can also by done by DMA1and DMA2 for data transfer.

• The memory-mapped region access can be done by the Cortex®-M4 for code and data
fetch and also by the DMA1 and DMA2 for data transfer.

The following figure shows the QUADSPI interconnection in the STM32WB35xx and
STM32WB55xx devices system.

Figure 5. System architecture:STM32WB35xx and STM32WB55xx

Bus mutliplexer

32-bit AHB bus

D
-b

us

Bus matrix

I-b
us

S
-b

us

ICode

DCode

SCode

CFI
arbiter

Flash
memory

SRAM1

SRAM2

AHB2 peripheral

AHB1 peripheral

AHB4
AHB5

CPU1
Arm Cortex-M4

D
M

A
1CPU2

Arm Cortex-M0+

D
M

A
2

R
ad

io

sy
st

em

Masters not having access to
QUADSPI

Masters accessing QUADSPI

Quad-SPI interface
QUADSPI registers access

QUADSPI memory-mapped region access

Registers
Memory-mapped region

When remapped

1 1

1

AN4760 Rev 3 17/95

AN4760 Quad-SPI interface description

94

3 Quad-SPI interface description

3.1 Flexible frame format

The Quad-SPI interface provides a fully programmable frame composed of five phases
where each phase is fully configurable, allowing it to be configured separately in terms of
length and number of lines.

The frame format can be configured only in Indirect mode or Memory-mapped mode but not
in Status-flag polling mode. The figure below shows a reading of the sequence in Quad I/O
SDR mode.

Figure 6. Reading sequence in quad I/O SDR

3.1.1 Instruction phase

In this phase a command (8-bits instruction) is sent to the Flash memory, specifying the type
of operation to be performed.This command is fully configurable allowing to send any value.
The user can simply write the desired command to be sent in the INSTRUCTION field of the
QUADSPI_CCR[7:0] register.

Depending on the software and the hardware configurations, the instruction can be sent
over one, two or four lines. In some use cases where only the address is sent, the
instruction phase can be skipped. The following table summarizes the different
configurations for instruction phase.

Note: The DDR mode is not supported in this phase, so even if the DDR mode is enabled the
command is always sent in SDR mode.

MSv41107V1

nCS

SCLK

IO 0

IO 1

IO 2

IO 3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

A23-16 A15-8 A7-0 M7-0 Byte 1 Byte 2

Instruction Address Alt Dummy Data

IO switch from
output to input

4

5

6

7

0

1

2

3

Only 2 cycles
command

Quad-SPI interface description AN4760

18/95 AN4760 Rev 3

Table 4. Instruction phase configurations

Register configurations

Indirect mode

Automatic-
polling mode

Memory-
mapped mode

Command formats

Instruction to be sent in
QUADSPI_CCR[7:0]

INSTRUCTION
[7: 0]

NA

Instruction phase
QUADSPI_CCR[9:8]

No Instruction:
skipped

IMODE[1:0] = 00 The instruction phase is skipped

Instruction on 1
line: Single SPI

mode
IMODE[1:0] = 01

Instruction on 2
lines: Dual SPI

mode
IMODE[1:0] = 10

Instruction on 4
lines: Quad-SPI

mode
IMODE[1:0] = 11

MSv41108V1

nCS

CLK

BK1_IO0

BK1_IO1

BK1_IO2

BK1_IO3

7 6 5 4 3 2 1 0 output

High-Z

High-Z

High-Z

MSv41109V1

nCS

CLK

BK1_IO0

BK1_IO1

BK1_IO2

BK1_IO3

6 4 2 0

7 5 3 1

Output

Output

High-Z

High-Z

MSv41110V1

nCS

CLK

BK1_IO0

BK1_IO1

BK1_IO2

BK1_IO3

4 0

5 1

Output

6 2

7 3

Output

Output

Output

AN4760 Rev 3 19/95

AN4760 Quad-SPI interface description

94

3.1.2 Address phase

In this phase an address is sent to the Flash memory, specifying the address of the data to
be read or written. The address phase is fully configurable allowing to send one, two, three
or four bytes address. In Indirect mode and Automatic-polling mode, the user can simply
write the desired address in the QUADSPI_AR register.

Depending on the software and the hardware configurations, the address can be sent over
one, two or four lines. In some use cases where the address is not needed such as in mass-
erase operation, the address phase can be skipped

The table below summarizes different address phase configurations.

Note: In Dual-Flash memory mode when DFM = 1 the address to be sent to Flash1 is exactly the
same address to be sent to Flash2.

3.1.3 Alternate-byte phase

This is an extra phase supported by the Quad-SPI interface offering more flexibility. It is
generally used for controlling the mode of operation; for instance 1-byte can be sent
continuously to keep the Quad-SPI device in an operating mode. This is supported for some
memory manufacturers such as Spansion, Micron and Macronix where an alternate byte is
sent continuously to keep the memory in execute-in-place mode.

The alternate-byte phase is fully configurable and permits to send one, two, three or four
bytes depending on the ABRSIZE [1:0] file configuration. The user can simply write the
desired alternate bytes in the QUADSPI_ABR register.

Table 5. Address-phase configurations

Register configurations
Indirect
mode

Automatic-
polling
mode

Memory-mapped
mode

Address to be sent QUADSPI_AR[31:0] ADDRESS[31:0]

Address is given
directly via the AHB
from any master on
the bus matrix like
Cortex® or DMA

Address size
QUADSPI_CCR[13:12]

1-byte ADSIZE[1:0] =00

2-byte ADSIZE[1:0] =01

3-byte ADSIZE[1:0] =10

4-byte ADSIZE[1:0] =11

Address phase
QUADSPI_CCR[11:10]

No address: skipped ADMODE[1:0] =00

Address on 1 line:
Single SPI mode

ADMODE[1:0] =01

Address on 2 lines:
Dual SPI mode

ADMODE[1:0] =10

Address on 4 lines:
Quad SPI mode

ADMODE[1:0] =11

Quad-SPI interface description AN4760

20/95 AN4760 Rev 3

Depending on the software and the hardware configurations, the alternate byte can be sent
over one, two or four lines. If not needed, the alternate-byte phase can be skipped.

The table below summarizes different alternate-byte phase configurations.

Note: In Dual-Flash memory mode when DFM = 1, the alternate-byte to be sent to Flash1 is
exactly the same as the ones to be sent to Flash2.

Alternate-byte phase: sending a nibble in Dual-SPI mode

In some cases only one nibble needs to be sent at alternate-byte phase during two clock
cycles rather than a full byte during four clock cycles. For instance, when the Dual-SPI
mode is used and only two cycles are used for the alternate-byte phase.

The Quad I/O mode can be activated only for alternate-byte phase in order to send an
alternate byte where the nibble is sent over IO0 and IO1 while the other nibble have to be
sent only to keep IO2 low and IO3 high during alternate-byte phase.

Figure 7. Alternate-byte phase: sending a nibble in dual-SPI mode

Table 6. Alternate-byte phase configurations

Register configuration
Indirect
mode

Automatic
-polling
mode

Memory-
mapped

mode

Alternate-byte to be sent QUADSPI_ABR QUADSPI_ABR

Alternate-byte size
QUADSPI_CCR[17:16]

1-byte ABSIZE [1:0] =00

2-byte ABSIZE [1:0] =01

3-byte ABSIZE [1:0] =10

4-byte ABSIZE [1:0] =11

Alternate-byte phase
QUADSPI_CCR[15:14]

No alternate-byte: skipped ABMODE [1:0] = 00

Alternate-byte on 1 line:
single SPI mode

ABMODE [1:0] = 01

Alternate-byte on 2 lines:
dual SPI mode

ABMODE [1:0] = 10

Alternate-byte on 4 lines:
Quad SPI mode

ABMODE [1:0] = 11

MSv41111V1

nCS

CLK

BK1_IO0

BK1_IO1

BK1_IO2

BK1_IO3

0 0

0 1

Output

0 0

1 1

Output

nWP

nHOLD

Nibble to be sent 0010

Alternate-byte

AN4760 Rev 3 21/95

AN4760 Quad-SPI interface description

94

3.1.4 Dummy-cycle phase

The dummy-cycle phase is needed in some cases when operating at high clock
frequencies. This phase allows to ensure enough “turnaround” time for changing the data
signals from output mode to input mode.

The dummy phase is enabled by setting the number of dummy cycles in the DCYC[4:0] field
QUADSPI_CCR register. The number defined in DCYC[4:0] filed can reach 31 cycles and it
does not depend on the used hardware configuration.

Note: Either in SDR or DDR mode, one dummy represents always one QUADSPI clock cycle.

During this phase, if the QUADSPI hardware configuration is used and if communication
phases are either in Quad-SPI or Dual-SPI modes, IO2 is forced to ‘0’ to disable the “write
protect” function while IO3 is forced to ‘1’ to disable the “hold” function of the Quad-SPI
memory. This is fully managed by hardware (QUADSPI peripheral) so nothing needs to be
configured by the user.

Figure 8. Dummy-cycle: IO2 maintained low and IO3 maintained high by hardware

3.1.5 Data phase

In this phase; the data is sent or received from or to the Quad-SPI memory. The data phase
is fully configurable and permits to send, receive or both any number of bytes to or from the
Quad-SPI memory device.

In Indirect mode and in Automatic-polling mode, the number of bytes to be sent, received or
both is specified in the QUADSPI_DLR register.

In Indirect-write mode the data to be sent to the Flash memory must be written to the
QUADSPI_DR register, while in Indirect-read mode the data received from the Flash
memory is obtained by reading from the QUADSPI_DR register.

In Memory-mapped mode, the data can only be read from the memory device but not
written, then the data is accessed directly from the QUADSPI FIFO. All masters on the bus
matrix can read data from the Quad-SPI memory device as if it was an internal memory.

MSv41160V1

nCS

CLK

BK1_IO0

BK1_IO1

BK1_IO2

BK1_IO3

High-Z

High-Z

nWP

nHOLD

2 Dummy cycles

1

0

Quad-SPI interface description AN4760

22/95 AN4760 Rev 3

Depending on the software and the hardware configurations, the data transfer can be done
in one, two or four lines. In some use cases where data is not needed such as erasing
operation, the data phase can be skipped.

The following table summarizes the data phase configuration in different functional modes.

Table 7. Data phase configuration versus Quad-SPI functional modes

Register configuration
Indirect
mode

Automatic-
polling mode

Memory-mapped mode

Data
Read data QUADSPI_DR

Data read is sent back
directly over the AHB to
any master on the bus
matrix requesting for
reading operation (Cortex®,
DMA LTDC, DMA2D...).

Write data QUADSPI_DR Not supported

Number of data to
be sent/received

QUADSPI_DLR

1-byte
0x00000000

to

undefined(1)

0xFFFFFFFF

1. When QUADSPI_DLR = 0xFFFFFFFF, the number of bytes to be sent or received is undefined so the
transfer continues until the end of memory as defined in FSIZE. When QUADSPI_DLR = 0xFFFFFFFF and
FSIZE = 0x1F then the transfer continue indefinitely, stopping only after an abort request or after the Quad-
SPI is disabled. After the last memory address is read (at address 0xFFFFFFFF), the reading continues
with address = 0x00000000.

1-byte
0x00000000

to

4-bytes
0x00000003

QUADSPI_DLR has no
meaning in this mode.

If DMA is used, number of
data to be read is set only
in DMA's DMA_SxNDTR
register.

Data phase
QUADSPI_CCR[1
5:14]

No Data: skipped DMODE[1:0] = 00(2)

2. This mode should be used only in the Indirect mode.

Data on 1 line:
Single SPI mode

DMODE[1:0] = 01

Data on 2 lines:
Dual SPI mode

DMODE[1:0] = 10

Data on 4 lines:
Quad SPI mode

DMODE[1:0] = 11

AN4760 Rev 3 23/95

AN4760 Quad-SPI interface description

94

3.2 Multiple hardware-configurations

STM32 devices offer a very flexible Quad-SPI interface that permits the connection of
external Quad-SPI memories in different hardware configurations. The user can then
choose its own configuration.

Depending on the used hardware configuration, the number of used GPIOs can be up to 11.
The table below summarizes different use cases.

Note: If none of the phases are configured to use Quad-SPI mode, then the GPIOs corresponding
to IO2 and IO3 can be used for other functions even while QUADSPI is active.

3.2.1 Single-SPI mode (classic SPI)

This is the classic SPI where only four GPIOs are used and the data is sent on SO line and
received on SI line.

Note: Full duplex transfer is not supported.

Table 8. Hardware configurations versus used GPIO number

- - Single-Flash mode
Dual-Flash

memory mode

Single/Dual SPI
mode

Used GPIOs

Bank1

CLK

BK1_IO0/SO

BK1_IO1/SI

BK1_nCS

Bank2

CLK

BK2_IO0/SO

BK2_IO1/SI

BK2_nCS

CLK

BK1_IO0/SO

BK1_IO1/SI

BK2_IO0/SO

BK2_IO1/SI

BK1_nCS(1)

BK2_nCS(1)

1. In Dual-Flash mode it is possible to use one chip select, either BK1_nCS or BK2_nCS. For more details on
dual-flash mode, refer to Section 3.2.4: Dual-Flash memory mode on page 25.

GPIOs number 4 GPIOs 6 or 7 GPIOs

Quad-SPI mode
Used GPIOs

Bank1

CLK

BK1_IO0/SO

BK1_IO1/SI

BK1_IO2

BK1_IO3

BK1_nCS

Bank2

CLK

BK2_IO0/SO

BK2_IO1/SI

BK2_IO2

BK2_IO3

BK2_nCS

CLK

BK1_IO0/SO

BK1_IO1/SI

BK1_IO2

BK1_IO3

BK2_IO0/SO

BK2_IO1/SI

BK2_IO2

BK2_IO3

BK1_nCS(1)

BK2_nCS(1)

GPIOs number 6 GPIOs 10 or 11 GPIOs

Quad-SPI interface description AN4760

24/95 AN4760 Rev 3

The IO2 and IO3 lines are optional:

• When used (IO2 and IO3 are connected to the Quad-SPI memory): IO2 and IO3 pins
should be configured as for IO0 and IO1. To allow communication with memory device:

– IO2 is in output mode and forced to ‘0’ to deactivate the “write protect” function

– IO3 is in output mode and forced to ‘1’ to deactivate the “hold” function

– This is managed by the hardware (QUADSPI peripheral) during all communication
phases

• When not used, the nWP and nHOLD memory device pins have to be connected
respectively to VDD and VSS while IO2 and IO3 pins could be used for other purposes.

In this mode, all phases as instruction, address, alternate-byte and data have to be
configured in single-SPI mode by setting the IMODE/ADMODE/ABMODE/DMODE fields in
QUADSPI_CCR to 01.

Figure 9. Hardware configuration: Single-SPI mode

3.2.2 Dual-SPI mode

In Dual-SPI mode the hardware configuration is similar to the one in single mode, but here
two lines are used for data, it means that data is sent and received in two lines. As for
Single-SPI mode, the IO2 and IO3 lines are optional, if not used the nWP and nHOLD
device pins have to be connected respectively to VDD and VSS.

In this mode all the instruction, address, alternate-byte and data phases have to be
configured in Dual-SPI mode by setting the IMODE/ADMODE/ABMODE/DMODE fields in
QUADSPI_CCR to 10.

Figure 10. Hardware configuration: dual-SPI mode

Flash

QUADSPI

CLK

BK1_IO0/SO

BK1_IO1/SI

BK1_IO2

BK1_IO3

BK1_nCS

CLK

Q0/SI

Q1/SO

Q2/nWP

Q3/ nHOLD

nCS

Control
communication lines

Communication line:
from Flash to QUAD-SPI

Communication line:
from QUADSPI to Flash

Optional lines

MSv41113V1

Flash

QUADSPI

CLK

BK1_IO0/SO

BK1_IO1/SI

BK1_IO2

BK1_IO3

BK1_nCS

CLK

Q0/SI

Q1/SO

Q2/nWP

Q3/ nHOLD

nCS

Control
communication lines

Optional lines

Communication lines

AN4760 Rev 3 25/95

AN4760 Quad-SPI interface description

94

3.2.3 Quad-SPI mode

In the Quad-SPI mode six pins are used: four pins for data and two pins for clock and chip
select. In this hardware configuration it is possible to use either Single or Dual-SPI mode. In
Quad-SPI mode the data is transferred, received or both over four lines.

Note: In this mode, the hold and WP features are no longer available as IO3 and IO4 are used for
communications.

In Quad-SPI mode, depending on the Quad-SPI memory brand, the user can choose to
send each phase in single, dual or quad mode. Many memory manufacturers are supporting
the following configurations where Command-Address-Data: 1-1-4; 1-4-4; 4-4-4.

In general, if the address is sent in four lines then the alternate-byte should be sent in four
lines too.

Figure 11. Hardware configuration: Quad-SPI mode

3.2.4 Dual-Flash memory mode

In Dual-Flash memory mode, the MCU communicates with two external memory devices at
the same time.This mode is useful to double throughput and to double size while using only
10 GPIOs: eight for data, one chip select for both devices and one for CLK. A throughput of
two bytes per cycle can be attained with dual-Flash memory in DDR Quad-SPI mode.

In this mode, only one chip-select could be used for both devices and then save one GPIO
for other usages and either nCS_BK1 or nCS_BK2 can be connected to both devices. The
clock has to be connected to both devices.

Different hardware configurations are allowed, offering a high flexibility to the user. Table 8
on page 23 illustrates all possible hardware configurations.

The Dual-memory mode allows doubling the throughput, as one byte can be sent or
received at every cycle. This mode is very interesting when more performance is needed;
not only throughput is doubled in Dual-Flash memory mode, but also the external memory
size is doubled.

When using two external Quad-SPI memories the size to be configured in FSIZE[4:0]
should reflect the total Flash memory capacity, which is double the size of one individual
component.

To support dual die packages with two chip-selects and dual Quad-SPI devices, the FIFO
size is always 32-bytes either in single Flash or Dual-Flash memory mode.

Note: The addressable space in Memory-mapped mode is up to 256 Mbytes either in Single-Flash
memory mode or Dual-Flash memory mode.

Flash

QUADSPI

CLK

BK1_IO0/SO

BK1_IO1/SI

BK1_IO2

BK1_IO3

BK1_nCS

CLK

Q0/SI

Q1/SO

Q2/nWP

Q3/ nHOLD

nCS

Control
communication lines

Communication lines

Quad-SPI interface description AN4760

26/95 AN4760 Rev 3

The following figure shows an example of a read sequence in Dual-Flash memory Quad I/O
SDR mode.

Figure 12. Read sequence in dual-Flash memory Quad I/O SDR mode

Note that all bytes at even addresses are stored in Flash 1 while all bytes at odd addresses
are stored in Flash 2. As described in Figure 12, in dual-Flash mode the same command,
address and alternate are sent to both Flash 1 and Flash 2. For example to read the first
four bytes in dual-Flash memory-mapped mode from 0x90000 000 to 0x9000 0003 the
following sequence is done by QUADSPI peripheral:

• The address 0x0000 0000 is sent to both Flashes and Byte 1 (at even address
0x9000 0000) is read from Flash 1 while Byte 2 (at odd address 0x9000 0001) is read
from Flash 2.

• Then the address 0x0000 0001 is sent to both Flashes and Byte 3 (at even address
0x9000 0002) is read from Flash 1 while Byte 2 (at odd address 0x9000 0003) is read
from Flash 2.

MSv41115V1

nCS_BK1

SCLK

BK1_IO0 4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

0

1

2

3

Instruction Address Alternate Dummy Data

4

5

6

7

0

1

2

3

20

21

22

23

16

17

18

19

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

4

5

6

7

Byte 1 Byte 3

IO switch from
output to input

4

5

6

7

0

1

2

3

Byte 2 Byte 4

BK1_IO1

BK1_IO2

BK1_IO3

BK2_IO0

BK2_IO1

BK2_IO2

BK2_IO3

Same command

nCS_BK2

20

21

22

23

16

17

18

19

12

13

14

15

8

9

10

11

Same address Same mode bits

Fl
as

h
1

Fl
as

h
2

4

5

6

7

0

1

2

3

0

1

2

3

4

5

6

7

Bytes at odd
address

Bytes at even
address

AN4760 Rev 3 27/95

AN4760 Quad-SPI interface description

94

Cautions:

• In Dual-Flash memory mode both device models must be identical, because in this
mode the same commands and addresses are issued in parallel to both Flash
memories; this permits to double the available Quad-SPI external Flash size. In the
case that the two Flash-memory devices are different, the Dual-Flash mode must be
disabled (DFM = 0) and each Flash memory could be used in standalone, allowing
either Flash 1 or Flash 2 to be enabled using QUADSPI_CR[7] FSEL bit.

• For all hardware configurations listed in the table below, each memory device is
configured in Quad-SPI mode. It is possible to connect each device in Single or Dual-
SPI mode. If DFM = 1, both devices must be configured in the same way. This permits
to double the available external data size and throughput.

• The Flash memory size, as specified in FSIZE[4:0] (QUADSPI_DCR[20:16]) should
reflect the total Flash memory capacity, which is the double of the size of one individual
component.

Table 9. Dual-Flash memory hardware configurations

Used
nCS

nCS
configuration

Flash mode Hardware configuration

2 nCS
enabled

Both nCS_BK1
and nCS_BK2
not connected
together

Single Flash
DFM = 0(1)

FSEL = 0

Flash 1
enabled

FSEL = 1

Flash 2
enabled

Dual-Flash memory DFM
= 1

MSv41116V1

Flash 1CLK

Q0/SI

Q1/SO

Q2/nWP

Q3/ nHOLD

nCS

Flash 2CLK

Q0/SI

Q1/SO

Q2/nWP

Q3/ nHOLD
nCS

QUADSPI

BK2_IO0/SO

BK2_IO1/SI

BK2_IO2

BK2_IO3

BK2_nCS

CLK

BK1_IO0/SO

BK1_IO1/SI

BK1_IO2

BK1_IO3

BK1_nCS

Quad-SPI interface description AN4760

28/95 AN4760 Rev 3

1 nCS
enabled

nCS_BK1
connected to
both devices

Dual-Flash memory DFM
= 1

nCS_BK2
connected to
both devices

Dual-Flash memory DFM
= 1

1. When single-Flash memory mode is selected DFM = 0, the user can switch between Flash 1 or Flash 2 using FSEL bit.

Pink lines highlight the used chip select.

Table 9. Dual-Flash memory hardware configurations (continued)

Used
nCS

nCS
configuration

Flash mode Hardware configuration

MSv41118V1

Flash 1CLK

Q0/SI

Q1/SO

Q2/nWP

Q3/ nHOLD

nCS

Flash 2CLK

Q0/SI

Q1/SO

Q2/nWP

Q3/ nHOLD
nCS

QUADSPI

BK2_IO0/SO

BK2_IO1/SI

BK2_IO2

BK2_IO3

CLK

BK1_IO0/SO

BK1_IO1/SI

BK1_IO2

BK1_IO3

BK1_nCS

MSv41119V1

Flash 1CLK

Q0/SI

Q1/SO

Q2/nWP

Q3/ nHOLD

nCS

Flash 2CLK

Q0/SI

Q1/SO

Q2/nWP

Q3/ nHOLD
nCS

QUADSPI

BK2_IO0/SO

BK2_IO1/SI

BK2_IO2

BK2_IO3

BK2_nCS

CLK

BK1_IO0/SO

BK1_IO1/SI

BK1_IO2

BK1_IO3

AN4760 Rev 3 29/95

AN4760 Quad-SPI interface description

94

3.2.5 DDR and SDR mode

The SDR mode is activated by default, DDR mode permits to sample at rising and falling
edge of each clock cycle and enables the possibility to double the throughput. DDR mode
allows boosting the throughput and the execution performances; it is also very useful when
the system clock (HCLK) is low and does not allow the QUADSPI to operate at maximum
speed.

• SDR: data sent on CLK falling edge and sampled on CLK rising edge.

• DDR: data sent on both CLK edges, during the address, alternate or data phases. The
sample is done one half CLK later.

When using DDR (dual data rate), also known as DTR (dual transfer rate) the user should
consider the following:

• The communication start triggering and the configuration procedure are the same as in
SDR.

• The command is sent every clock cycle like in SDR mode.

• The alternate, data and address phases are sent on both edges of the clock.

• The dummy cycles are counted every clock cycle like in SDR mode.

3.3 Three operating modes

3.3.1 Indirect mode

The Indirect mode is used in below cases:

• For reading, writing or erasing operations

• If there is no need for AHB masters to access autonomously the Quad-SPI memory
(available in Memory-mapped mode)

• For all the operations to be performed through the QUADSPI data registers using CPU
or using DMA

• To configure the Quad-SPI Flash memory.

In Indirect mode, all operations are performed through the QUADSPI register where both
read and write operations are available and managed by software. The Quad-SPI interface
behaves like a classical SPI interface. The transferred data goes through the data register
with FIFO. The data exchanges are driven by software or by DMA, using related interrupt
flags in the QUADSPI status registers.

The read and write operations are always performed in burst unless the amount of data is
equal to one. The amount of data to be transferred is set in the QUADSPI_DLR register. In
this mode it is possible to read or write data from or to external Flash memory with sizes up
to 4 Gbytes.

The Automatic-polling mode is available to generate an interrupt when the status-register
inside the Flash memory is changing (useful for checking the end of the erase or the end of
programming).

In case of an erase or programming operation, the Indirect mode has to be used and all the
operations have to be handled by software. In this case, it is recommended to use the
Status-polling mode and then poll the status register inside the Flash memory to know when
the programming or the erase operation is completed.

Quad-SPI interface description AN4760

30/95 AN4760 Rev 3

3.3.2 Status-flag polling mode

The Status-flag polling mode is used in below cases:

• To read Quad-SPI Flash memory status register

• To poll autonomously for the end of an operation: QUADSPI polls the status register
inside the memory

The interface can automatically poll a specified register inside the memory and relieve the
CPU from this task (useful when polling end of programming flag for example). This is a
mode to check for example when an erase operation is completed and to know that an
interrupt could be generated.

The Quad-SPI interface can also be configured to periodically read at a defined rate a
register in the Quad-SPI Flash memory. The returned data can be masked to select the bits
to be evaluated. The selected bits are compared bit per bit with their required values stored
in the match register. The result comparison can be treated in two ways:

• ANDed mode: if all the selected bits are matching, an interrupt is generated when it
succeeds (stop on match flag)

• ORed mode: if one of the selected bits is matching, an interrupt is generated when it
succeeds (stop on match flag)

When a match occurs, the Quad-SPI interface can stop automatically. The READ STATUS
REGISTER command is used by many memory manufacturers as Micron or Spansion to
read continuously the status register.

3.3.3 Memory-mapped mode

The Memory-mapped mode is used in below cases:

• For reading operations

• To use external Quad-SPI Flash memory like an internal memory, so any AHB master
can read data autonomously

• For code execution from external Quad-SPI Flash memory.

In Memory-mapped mode the external memory is seen by the system as it was an internal
memory. This mode allows all AHB masters to access the Quad-SPI memory as an internal
memory. The CPU can execute code from the Quad-SPI memory as well.

When Memory-mapped mode is used, a prefetching mechanism fully managed by the
hardware permits the optimization of the read and the execution performances from the
external Quad-SPI memory. Given that all the communication phases such as sending
opcode or address are managed by the QUADSPI peripheral, a 32-bytes FIFO (16-bytes for
STM32L4 Series) is used for prefetching; this optimized prefetch mechanism avoids
software overhead.

The programmed instructions and frame are sent automatically when an AHB master is
accessing the memory-mapped space. Once the QUADSPI peripheral is configured, the
Quad-SPI memory is accessed as soon as there is a read request on the AHB; this is done
in the Quad-SPI memory mapped address range. This action is totally transparent for the
user.

An LTDC master for example can access autonomously to the external Flash memory
where all the access operations are fully managed by the Quad-SPI interface. Meanwhile,
the Cortex®-M CPU is executing code from the internal Flash memory.

AN4760 Rev 3 31/95

AN4760 Quad-SPI interface description

94

The Quad-SPI interface is able to manage up to 256 Mbytes memory starting from
0x9000 0000 to 0x9FFF FFFF in the Memory-mapped mode.

Execute in place (XIP)

The prefetch buffer supports execution in place, therefore the code can be executed directly
from the external Quad-SPI memory. The QUADSPI anticipates the next CPU access and
loads in advance the byte at the following address. If the subsequent access is indeed made
at a continuous address, the access is completed faster since the value is already
prefetched.

Figure 13. Executing non-sequential code from Quad-SPI

Booting from Quad-SPI Flash memory

Boot from the Quad-SPI memory is not supported but the user can boot from the internal
Flash memory and then configure the QUADSPI in Memory-mapped mode and then the
execution starts from the Quad-SPI memory. For more details on how to execute from the
external Quad-SPI memory, refer to Section 6.2 on page 67.

Note: Reading the QUADSPI_DR in Memory-mapped mode has no meaning and returns 0.

For all the supported STM32 devices, the Quad-SPI memory is accessible by Cortex®-M
through system bus. For the STM32L4 Series, the QUADSPI is also accessible through the
I-Code and the D-Code buses when a physical remap is enabled at address 0, which allows
better execution performances.

When the QUADSPI is remapped at address 0x0000 0000, only 128 Mbytes are remapped.
Even when aliased in the boot memory space, the Quad-SPI memory is still accessible at its
original memory space.

Note: The data length register QUADSPI_DLR has no meaning in Memory-mapped mode.

MSv41161V1

Command Address Dummy Byte1 Byte2 ….. ByteN Command Address Dummy Byte1 Byte2 …..

nCS

First read operation Second read operationJump

Quad-SPI interface description AN4760

32/95 AN4760 Rev 3

3.4 Special features

3.4.1 Send instruction only-once (SIOO)

The SIOO feature is named also by some memory manufacturers as “continuous read
mode”, “burst mode” or even as “performance enhanced mode”. This feature is available for
all Quad-SPI modes: Indirect, Automatic-polling and Memory-mapped. It is recommended to
use this feature in order to reduce command overhead and to boost the execution
performances. When SIOO is enabled, the command is sent only once when starting the
reading operation, then only the address is sent.

The command is sent only at first when starting the read operation. If a new read operation
occurs, only one address is sent; this action permits the reduction of up to eight cycles (in
Single I/O mode) for the command. This is a very interesting feature to reduce access
overhead to the Quad-SPI memory.

Data are prefetched continuously while the FIFO is not full, when a discontinuous access is
detected, the QUADSPI rises chip-select and starts a new read operation without sending
the command but sending directly the new address.

Figure 14. Executing non-sequential code from QUADSPI with SIOO enabled

The SIOO feature is supported by many Quad-SPI memory manufacturers such as Micron,
Spansion and Macronix, nevertheless before using it, the user has to check if the feature is
supported by the used memory.

To enable the SIOO mode, the user should:

• Configure the memory by entering the SIOO mode. Refer to relevant manufacturer’s
datasheet for more details on how to enter this mode (make sure that the read
command to be used does support this mode). Note that an alternate byte (mode Bits)
needs to be sent in order to keep the device in this mode. Refer to SIOO example on
Section 6.2 on page 67 for more details on enabling this feature.

• Configure the QUADSPI peripheral by setting the SIOO bit in QUADSPI_CCR register.

3.4.2 Delayed data sampling

For read operations from the external memories, the delayed data sampling is useful when
the signals are delayed due to constraints on the PCB layout optimizations; hence the
optimization compensates this delay. The sampling clock can be shifted by an additional half
cycle after data is driven by the Flash memory, this is done to guarantee that the data is
ready at the sampling moment. This feature is not supported in DDR mode. To enable
sampling shift, set the SSHIFT bit in QUADSPI_CR register.

For write operations from the external memories in DDR mode, the output data can be
shifted by one quarter of the QUADSPI output clock cycle in order to relax the hold
constraints. To enable this output data delay, set the DHHC bit in QUADSPI_CR register.

MSv41162V1

Command Address Dummy Byte1 Byte2 ..
. ByteN Address Dummy Byte1 ...

nCS

First read operation Third read operationJump

Byte
N Address Dummy Byte1

JumpSecond read operation

Mode
bits

Mode
bits

Mode
bits

AN4760 Rev 3 33/95

AN4760 Quad-SPI interface description

94

For more details on QUADSPI timing characteristics refer to the relevant products
datasheet.

3.4.3 Timeout counter

The timeout counter can be used to reduce the Quad-SPI memory power-consumption by
releasing the nCS and then putting the memory in a lower consumption state.

After each access in Memory-mapped mode, the QUADSPI prefetches the subsequent
bytes and holds these bytes in the FIFO. When the FIFO is full, the communication clock is
stopped but the nCS pin remains low to keep the Flash memory selected and not resend a
complete command to read the next bytes when location is available in the FIFO.

To avoid any extra power-consumption in the external Flash memory, when the clock is
stopped for a long time, the timeout counter can release the nCS pin; this action puts the
external Flash memory in a lower-consumption state after a period of timeout elapsed
without any access. Once FIFO becomes empty, the nCS is low and permits read
operations.

To use the timeout counter the user should:

• Enable it by setting the TCEN bit in the QUADSPI_CR register

• Program the timeout period TIMEOUT[15:0] in the QUADSPI_LPTR register

Note: When the timeout counter is enabled, for example in memory-mapped mode, if timeout
occurs, nCS is raised; and for any new read access, a new complete read command
sequence is started by the Quad-SPI interface.

3.4.4 Additional status bits

Other than status flags described in Table 13, the QUADSPI_SR status register includes
additional status bits, the table below summarizes the status flags.

3.4.5 Busy bit and abort functionality

BUSY bit

The BUSY bit is used to indicate the state of the Quad-SPI interface, it is set in the
QUADSPI_SR register when an operation is ongoing and it clears automatically when the
operations are finished or aborted.

Note: Some QUADSPI registers cannot be written when the BUSY bit is set, so the user have to
check if it is reset before writing to registers. Refer to the relevant reference manual to check
if the register could be written or not when BUSY is set.

Table 10. Additional status bits

Name Size Description

FLEVEL
5 bits

(4 bits for STM32L4 Series)
Number of valid bytes being held in the FIFO
(for indirect mode)

BUSY 1 bit
This bit is set when an operation is ongoing.
Clears automatically when operations are
finished and FIFO is empty.

Quad-SPI interface description AN4760

34/95 AN4760 Rev 3

The following table summarizes different cases when the BUSY bit is reset in different
QUADSPI operating modes:

ABORT bit

When an application is running, any ongoing QUADSPI operation can be aborted by setting
the ABORT bit in the QUADSPI_CR register. Once the abort is completed, the BUSY bit and
the ABORT bit are automatically reset and the FIFO is flushed. If an abort occurs on an
ongoing AXI/AHB burst operation, the QUADSPI allows the ongoing burst to complete
properly before reseting the BUSY bit and the ABORT bit.

Note: Some Flash memories might misbehave if a write operation to a status registers is aborted.

3.4.6 4-byte address mode

This mode is named also by some brands “extended address mode”. In this mode a 4-byte
address is sent; this action permits to address the Flash memories with sizes up to four
Gbytes. This mode is supported by many Quad-SPI memory manufacturers such as Micron,
Spansion and Macronix.

Before using the 4-byte mode, the user has to check if it is supported by the used device.

To enable this mode, the user should:

• Configure the memory by entering the 4-byte mode. Refer to relevant manufacturer’s
datasheet for more details on how to enter this mode.

– For Micron devices for example, the ENTER 4-BYTE ADDRESS MODE “B7h”
command should be used, then the user should use dedicated 4-byte address
commands for some operations, such as read, program or erase, from the device
datasheet.

– For Micron devices, if a read operation is needed, the user should use 4-BYTE
READ command “13h” instead of READ “03”

• Configure the QUADSPI peripheral in 32-bits address mode by setting ADSIZE[1:0] =
11 field in QUADSPI_CCR register.

Note: The memory size has to be configured according to the fixed address size respecting the
following formula: number of bytes in Flash memory = 2[FSIZE+1] where [FSIZE+1] is
effectively the number of address bits required to address the Flash memory.

The following table summarizes the different address modes versus the maximum
addressable memory space.

Table 11. BUSY bit reset in different Quad-SPI modes

Quad-SPI mode BUSY bit reset

Indirect mode
– The QUADSPI has completed the requested command sequence and the

FIFO is empty

– Due to an abort

Automatic-polling
mode

– After the last periodic access is complete, due to a match when APMS =1

– Due to an abort

Memory-mapped
mode

– On a timeout event

– Due to an abort

– QUADSPI peripheral is disabled

AN4760 Rev 3 35/95

AN4760 Quad-SPI interface description

94

Cautions on 4-byte address mode:

• In Indirect mode, if the address plus the data length exceeds the Flash memory size,
TEF flag is set as soon as the access is triggered.

• In Memory-mapped mode, if an access is made to an address outside of the range
defined by FSIZE but still within the 256 Mbytes range, then an AHB error is given. The
effect of this error depends on the AHB master that attempted the access; if it is the
Cortex® CPU, a hard fault interrupt is generated and if it is a DMA, a DMA transfer error
is generated while the corresponding DMA channel is automatically disabled.

3.4.7 QUADSPI and delay block in STM32H7 Series

In the STM32H7 Series, the QUADSPI has its own delay block accessible through AHB3.
The delay block can be used to generate a sampling clock which is phase-shifted from the
output clock sent on the chip pin. The delay block aligns the sampling clock on the incoming
data.

Figure 15. QUADSPI and delay block

Table 12. Address mode versus maximum addressable memory space

Address length
QUADSPI_CCR

ADSIZE [1:0]
QUADSPI_DCR

[20:16] FSIZE [4:0]
Memory size

2[FSIZE+1]

8-Bits address 00 00111 Up to 256 bytes

16-Bits address 01 01111 Up to 64 Kbytes

24-Bits address 10 10111 Up to 16 Mbytes

32-Bits address 11 11111 Up to 4 Gbytes(1)

1. Only the first 256 Mbytes of the Quad-SPI memory can be read in Memory-mapped mode (from
0x9000 0000 to 0x9FFF FFFF).

MSv61188V1

QUADSPI

DLYB

CLK GPIO pin

dlyb_out_ck dlyb_in_ck

Registers access
over AHB3

dlyb_in_ck : delay block input clock
dlyb_out_ck : delay block output clock

Quad-SPI interface description AN4760

36/95 AN4760 Rev 3

3.5 Interrupts and DMA usage

3.5.1 Interrupts usage

The QUADSPI peripheral supports five different interrupts where each one is useful in a
particular case. To be used, each interrupt has to be enabled by setting its corresponding
enable bit and enabling the QUADSPI global interrupt on the NVIC side.

The table below summarizes all the supported interrupts.

3.5.2 DMA usage

DMA can be used to perform data transfers from or to the Quad-SPI external memory, this is
possible when the Quad-SPI interface is configured either in Indirect read/write mode or in
Memory-mapped mode. In Memory-mapped mode only-read from Quad-SPI memory is
allowed.

DMA usage with QUADSPI in Indirect mode

In DMA mode, the DMA is the flow controller. When QUADSPI FIFO threshold is reached
while DMAEN bit is set, DMA requests are generated from QUADSPI to the DMA.

The transfer is started when

• The DMAEN bit is set and the QUADSPI and DMA are configured

• The FTF flag is set when FIFO threshold is attained

If DMAEN = 1 already, then the DMA controller must be disabled before changing the
FTHRES/FMODE.

Table 13. QUADSPI interrupts summary

Interrupt
Event
Flag(1)

1. All event flags are available in the QUADSPI_SR register

Enable
control

bit(2)

2. All enable-control bits are available in the QUADSPI_CR register

Clear
bits(3)

3. All clear bits are available in the QUADSPI_FCR register

Description

Timeout TOF TOIE CTOF Timeout occurred

Status match SMF SMIE CSMF
Matching of the masked received data
with the match register (automatic-
polling mode only)

FIFO threshold FTF FTIE - FIFO threshold reached (indirect mode)

Transfer complete TCF TCIE CTCF

Indirect mode: the correct number of
data set in the QUADSPI_DLR register
has been transferred

All modes: the transfer has been
aborted

Transfer error TEF TEIE CTEF
Indirect mode: out-of-range address
has been accessed

AN4760 Rev 3 37/95

AN4760 Quad-SPI interface description

94

In indirect mode when configuring the DMA for data transfer from/to the QUADSPI, the
QUADSPI should be considered as a peripheral:

• Memory to peripheral mode in case of writing data to the QUADSPI from the internal
memory

• Peripheral to memory mode in case of reading data from the QUADSPI to be
transfered into the internal memory.

Also the address of the QUADSPI should be written into the peripheral address register
(DMA channel/stream x peripheral address).

The table below summarizes the different DMA requests and transfer directions versus the
STM32 series.

DMA usage with QUADSPI in Memory-mapped mode

In Memory-mapped mode the QUADSPI allows the access to the external memory for read
operation through the memory mapped address region (from 0x9000 0000 to 0x9FFF FFFF)
and allows the external memory to be seen just like an internal memory.

In that case when configuring the DMA to transfer data from the QUADSPI memory-mapped
region into an other internal memory, the QUADSPI memory-mapped region should be
considered as a memory when configuring the DMA registers:

Memory to memory mode in case of reading data from the QUADSPI memory mapped
region to be transfered into the internal memory.

Also the address of the QUADSPI should be written into the peripheral address register
(DMA channel/stream x memory address).

In Memory-mapped mode the DMA is the flow controller since the QUADSPI does not
generate DMA requests

In Memory-mapped mode either DMA1 or DMA2 can be used to transfer data from the
external Quad-SPI memory to any other memory or peripheral. To perform a transfer using
DMA from external Quad-SPI memory to any other memory or a peripheral, the user should
configure the DMA by setting the source address (from 0x9000 0000), the destination
address and the number of data to be transferred.

Table 14. DMA requests mapping and transfer directions versus STM32 series

Product (1)

1. For applicable devices of each series embedding a QUADSPI.

DMA1 DMA2 MDMA

STM32L4 Series
Request 5
Channel 5

Request 3
Channel 7

NA

STM32F4 Series NA
Stream 7
Channel 3

NA

STM32F7 Series NA
Stream 7
Channel 3

NA

STM32H7 Series

NA NA
quadspi_ft_trg

channel
X[0..15]/Stream22

NA NA
quadspi_tc_trg

channel
X[0..15]/Stream23

Quad-SPI interface description AN4760

38/95 AN4760 Rev 3

The DMAEN bit has no effect in Memory-mapped mode, the transfer is started as soon as
the DMA is accessing the QUADSPI address range (from 0x9000 0000 to 0x9FFF FFFF).

Once the DMA configured transfer is started by software, the DMA reads the data from the
Quad-SPI memory exactly as an internal memory. The QUADSPI peripheral manages the
communication with the external memory and puts the read data in the FIFO.

The number of data items to be transferred is managed by the DMA so the user should
configure the number of data in the DMA’s register DMA_SxNDTR (or DMA_CNDTRx
register for STM32L4x6xx). There is no need to configure the QUADSPI_DLR register as it
has no effect in the Memory-mapped mode where the DMA is the flow controller.

Note: The DMA’s FIFO can be used for example if the DMA Burst mode is required to reduce the
transfer overhead on the bus matrix.

QUADSPI and master DMA in STM32H7 Series

In the STM32H7 Series the MDMA manages the DMA access to the Quad-SPI interface.
The MDMA can access the QUADSPI in the following ways:

• Directly from the AXI bus matrix over a 64-bit AXI bus for memory mapped access

• From AHB3 over a 32-bit AHB bus for registers access

The master DMA offers two trigger signals from the Quad-SPI interface to procure more
flexibility for the user's application. The two trigger signals are:

• quadspi_ft_trg: QUADSPI FIFO threshold trigger

• quadspi_tc_trg: QUADSPI transfer complete trigger

Figure 16. QUADSPI and master DMA

MDMA

Cortex-M7

I$ D$

ITCM

32-bit AHBS

Channel X[0..15]/Stream22
quadspi_ft_trg

Channel X[0..15]/Stream23
quadspi_tc_trg

32-bit AHB QUADSPI registers access

MSv61185v1

AXI
AHB

TCM

64-bit AXI master bus

DTCM

64-bit AXI QUADSPI memory-mapped access

64-bit bus width

32-bit bus width

Masters accessing
QUADSPI

QUADSPI
registers access

QUADSPI
memory-mapped
region access

Slaves

AN4760 Rev 3 39/95

AN4760 Quad-SPI interface description

94

3.6 Low-power modes

The STM32 power state is an important requirement that must be considered as it has a
direct effect on the Quad-SPI interface state. For example, if the MCU is in Standby mode
then the QUADSPI has to be reconfigured after wakeup from this mode.

Note: The Quad-SPI memories can also be put in low-power mode. Depending on the memory
brand, some devices support both Standby mode and Deep power-down mode while other
devices support only Standby mode.

In order to save more energy when the application is in low-power mode, it is recommended
to put the Quad-SPI memory in low-power mode before entering the STM32 in low-power
mode. More information on reducing power consumption is available on Section 7.2 on
page 90.

It is possible to perform transfers in Sleep mode while the CPU is stopped thanks to the
STM32 smart architecture and to the fact that in Sleep mode all peripherals can be enabled.
This can fit wearable applications where the low-power consumption is a must.

An AHB master such as DMA could continue the transfers from the QUADSPI (when
Memory-mapped mode is used) even after entering the MCU in Sleep mode. Once the
transfer is completed an interrupt can be generated to wakeup the STM32.

Refer to the products reference manuals for low-power mode configuration details.

QUADSPI configuration AN4760

40/95 AN4760 Rev 3

4 QUADSPI configuration

This section describes all QUADSPI configuration steps required to perform either read,
write or erase operations.

4.1 GPIOs configuration

The user should configure the GPIOs to be used for interfacing with the Quad-SPI memory,
and this is dependent on the preferred hardware configuration. For more details on the
hardware configurations please refer toTable 8 on page 23.

Note: It is recommended to reset the QUADSPI peripheral before starting a configuration and also
to guarantee that the peripheral is in reset state.

Depending on the GPIOs availability, the user can configure either Bank1 or Bank2 GPIOs.
The user can also configure both of banks if two Quad-SPI memories are connected.

Note: All GPIOs have to be configured in high-speed mode.

4.1.1 GPIOs configuration using STM32CubeMX tool

The following example shows how to configure QUADSPI GPIOs in quad I/O mode using
Bank1 GPIOs.

Using the STM32CubeMX tool is a very simple, easy and rapid way to configure the
QUADSPI peripheral and its GPIOs as it permits the generation of a project with a
preconfigured QUADSPI.

Once the STM32CubeMX project is created, a hardware configuration can be chosen on the
Mode window. This window is found on Pinout and configuration tab under the Connectivity
section and by selecting the QUADSPI menu.

Figure 17 shows how to select the QUADSPI hardware configuration with the
STM32CubeMX where Bank1 GPIOs are used.

Figure 17. STM32CubeMX: QUADSPI GPIOs configuration

1. Dual-bank mode in STM32CubeMx refers to Dual-Flash mode.

MSv61189V1

AN4760 Rev 3 41/95

AN4760 QUADSPI configuration

94

If after selecting one hardware configuration (as shown in Figure 17) the used GPIOs does
not match with the memory connection board, the user can configure the alternate function
directly on the corresponding pins.

For more details on QUADSPI alternate functions availability versus GPIOs, refer to the
alternate function mapping table in the relevant datasheet.

The figure below shows how to configure manually a PF8 pin to QUADSPI_BK1_IO0
alternate function.

Figure 18. STM32CubeMX: PF8 pin configuration to QUADSPI_BK1_IO0
alternate function

The used pins are highlighted in green once the GPIOs of the Quad-SPI interface are
correctly configured.

Dual-Flash memory case

If dual bank is selected, the user should select one of the listed chip-select configurations.
For more details on different dual-Flash memory chip-select configurations refer to
Section 3.2.4: Dual-Flash memory mode.

The following figure shows how to configure chip-select 1 for both banks with
STM32CubeMX.

QUADSPI configuration AN4760

42/95 AN4760 Rev 3

Figure 19. STM32CubeMX: Dual-Flash memory QUADSPI with chip-select 1
configuration

Enabling QUADSPI interrupts

To be able to use QUADSPI interrupts, the user should enable the QUADSPI global
interrupt on the NVIC side. After that, each interrupt is enabled separately by enabling its
corresponding enable bit (interrupt-enable bits are available in the QUADSPI_CR register
described in Table 13: QUADSPI interrupts summary).

The figure below shows the configuration window where the QUADSPI global interrupt can
be enabled, under the NVIC tab.

Figure 20. STM32CubeMX: enabling QUADSPI global interrupt

MSv61190V1

MSv61191V1

AN4760 Rev 3 43/95

AN4760 QUADSPI configuration

94

4.2 QUADSPI peripheral configuration and clock

4.2.1 QUADSPI peripheral configuration (QUADSPI_CR register)

The QUADSPI peripheral is configured using the QUADSPI_CR. The user must configure
the clock prescaler division factor and the sample shifting settings for the incoming data.

The DMA requests are enabled setting the DMAEN bit (DMAEN bit not available for
STM32H7 Series products). In case of interrupt usage, their respective enable bit can also
be set during this phase. The FIFO level both for DMA request generation and for interrupt
generation is programmed in the FTHRES bits.

If timeout counter is needed, the TCEN bit can be set and the timeout value can be
programmed in the QUADSPI_LPTR register.

The dual-Flash memory mode can be activated by setting DFM to 1.

The QUADSPI clock source is the AHB where a prescaler is used to generate the QUADSPI
CLK. Depending on the programmed prescaler in the QUADSPI_CR register it is possible
that both the CPU and the QUADSPI work at the same speed (PRESCALER[7:0] = 0).

The following figure shows a QUADSPI clock scheme for STM32F4, STM32L4, STM32F7,
STM32WB55xx and STM32WB15xx where QSPI_CLK = HCLK / (Prescaler + 1).

Figure 21. QUADSPI clock configuration on QUADSPI_CR register

In the STM32H7 Series devices the QUADSPI contains two different source clocks:

• quadspi_ker_ck
It is the source clock to generate QUADSPI CLK using the following relation
(QSPI_CLK=quadspi_ker_ck/(Prescaler + 1).

• quadspi_hclk (hclk3)
It is the source clock for the register interface. This clock has no impact on the
QUADSPI CLK.

STM32CubeMx permits the configuration of quadspi_ker_ck source clock in the clock
configuration section.

The following figure shows the multiple source clocks for quadspi_ker_ck using
STM32CubeMx.

MSv41194V1

PRESCALER[7:0]HCLK QSPI_CLK

QUADSPI configuration AN4760

44/95 AN4760 Rev 3

Figure 22. STM32CubeMX: quadspi_ker_ck source clock configuration in
STM32H7 Series

The source clock for quadspi_ker_ck can be selected by using the QUADSPI clock mux as
shown in the following figure.

Figure 23. STM32CubeMX: quadspi_ker_ck source clock selection in
STM32H7 Series

4.2.2 Quad-SPI Flash memory parameters configuration
(QUADSPI_DCR register)

The parameters related to the targeted external Flash memory are configured through the
QUADSPI_DCR register. The user must program the Flash memory size in the FSIZE field,
the chip-select minimum high-time in the CSHT field, and the functional mode (Mode 0 or
Mode 3) in the MODE bit in the QUADSPI_DCR register.

Note: The QUADSPI parameters can be changed when the application is running but not during
an ongoing transfer, in other words not when the busy bit is set. If a change in the
parameters is needed during an ongoing transfer, the abort bit can be used to stop the
ongoing operation, then the configuration can be changed.

MSv61192V1

MSv61193V1

AN4760 Rev 3 45/95

AN4760 QUADSPI configuration

94

QUADSPI configuration using STM32CubeMX

The STM32CubeMX tool can be used to configure the QUADSPI peripheral. Once the
GPIOs have been correctly configured, as already described, the QUADSPI parameters can
be configured. However, all configurations related to starting communications have to be
added manually by the user in the project.

In the QUADSPI configuration window, select the Parameter Settings tab then configure the
parameters. The figure below shows an example of QUADSPI configuration according to
the following conditions:

• Clock prescaler = 2 => QSPI_CLK = FAHB/3
for STM32H7 Series QSPI_CLK=quadspi_ker_ck/3

• FIFO threshold = 4 => FTF flag is set as soon as there are five or more free bytes
available to be written to the FIFO in case of write operation or FTF is set if there are
five or more valid bytes that can be read from the FIFO

• Sample shifting half cycle enabled =>sample the data read from the memory half-clock
cycle later (adjust the sampling time in case of cumulated delays on PCB)

• Flash size is 16 Mbytes => number of bytes in Flash memory = 2[FSIZE+1] = 2[23+1] =>
FSIZE = 23

• Chip select high time = 2 cycles => CSHT[2:0] = 1

• Clock mode is low => clock mode 0 enabled

• Flash ID = Flash ID 1 => select the Flash memory 1 to be addressed in Single-Flash
mode FSEL=0
Note that FSEL is ignored when DFM = 1

• Dual Flash = disabled ==> Dual-Flash mode disabled DFM = 0

Figure 24. STM32CubeMX: QUADSPI peripheral configuration

QUADSPI_CR

QUADSPI_DCR

QUADSPI_CR

MSv61194V1

QUADSPI configuration AN4760

46/95 AN4760 Rev 3

4.2.3 QUADSPI and MPU configuration

The memory protection unit (MPU) can be used to make the user application more robust
and more secure by protecting a memory region.

When using an STM32 product based on a Cortex®-M7 (such as STM32F7 and
STM32H7Series) it is highly recommended to configure the QUADSPI memory region
accessible in Memory-mapped mode as strongly ordered memory.

The QUADSPI memory region accessible in Memory-mapped mode goes from
0x9000 0000 to 0x9FFF FFFF. By performing this action the CPU is prevented to access
this region while Memory-mapped mode is not enabled.

In that same area (0x9000 0000 to 0x9FFF FFFF), once the external Flash size is defined
and the Memory-mapped mode is enabled, it is recommended to configure the unused
remaining memory area also as strongly ordered memory.

For more information about configuring the memory protection unit refer to the application
note Managing memory protection unit (MPU) in STM32 MCUs (AN4838).

4.2.4 Quad-SPI memory device configuration

The Quad-SPI memory should be configured after the QUADSPI peripheral has been
configured. The Quad-SPI memory configuration depends on the selected configuration for
QUADSPI for indirect mode.

Enable writing to Quad-SPI Flash memory

The write-enable command should be sent to the memory in order to set the write-enable
latch (WEL) bit.

The WEL bit must be set prior to every programming, erasing, and write-to-the-memory
status register operation. This command is generally sent in one line without any address or
data. The used QUADSPI mode is 1-0-0 (instruction on 1 line - no address - no data).

Figure 25. Write enable sequence (command 0x06)

Configuring dummy cycle

The number of dummy cycles should be configured in the Quad-SPI memory according to
the operating clock speed, for that, the user should refer to the datasheet of the memory
device.

AN4760 Rev 3 47/95

AN4760 QUADSPI configuration

94

4.2.5 Starting a communication (QUADSPI_CCR register)

Once the QUADSPI peripheral is configured, the communication can be started in one of
these modes:

• Indirect-write or Indirect-read mode

• Status-flag polling mode

• Memory-mapped mode.

The operating mode is configured in the FMODE[1:0] field in QUADSPI_CCR register.

Before starting the communication, the user should configure the frame format in the
QUADSPI_CCR register. Refer to Section 3.1: Flexible frame format for more details on
frame-format configuration.

Indirect-write mode (FMODE = 00)

Communication starts immediately if:

• A write is performed to INSTRUCTION[7:0] (QUADSPI_CCR), if no address is required
(ADMODE = 00) and no data needs to be provided by the firmware (DMODE = 00)

• A write is performed to ADDRESS[31:0] (QUADSPI_AR), if an address is necessary
(ADMODE != 00) and if no data needs to be provided by the firmware (DMODE = 00)

• A write is performed to DATA[31:0] (QUADSPI_DR), if an address is necessary (when
ADMODE != 00) and if data needs to be provided by the firmware (DMODE != 00)

Indirect-read mode (FMODE = 01)

Communication starts immediately if:

• A write is performed to INSTRUCTION [7:0] (QUADSPI_CCR), and if no address is
required (ADMODE=00)

• A write is performed to ADDRESS [31:0] (QUADSPI_AR), and if an address is
necessary (ADMODE!=00)

Status-flag polling mode (FMODE = 10)

The accesses to the Flash memory begins in the same way as in the Indirect-read mode,
communication starts immediately if:

• A write is performed to INSTRUCTION [7:0] (QUADSPI_CCR) and if no address is
required (ADMODE=00)

• A write is performed to ADDRESS [31:0] (QUADSPI_AR) and if an address is
necessary (ADMODE!=00)

Memory-mapped mode (FMODE = 11)

Once the Memory-mapped mode is configured, the communication starts as soon as there
is an access request from any AHB master.

QUADSPI configuration AN4760

48/95 AN4760 Rev 3

4.3 Hardware considerations

4.3.1 Pull-up resistance

Most Quad-SPI memory manufacturers recommend to connect a pull-up resistance to the
VCC on the CS pin. This is to ensure that, during power-up, the chip-select pin tracks its
voltage from VCC. For more details on electrical recommendations refer to the datasheet of
the relevant parts.

The following figure shows an example of a Quad-SPI memory connection where a pull-up
resistance is connected to the chip-select pin.

Figure 26. Connecting chip-select to a pull-up resistance

4.3.2 Good PCB design allows maximum QUADSPI speed

The speed at which the Quad-SPI interface operates depends on many factors, including
the board layout and the pad speeds. With a good layout it should be possible to reach the
maximum speeds described in Table 2: QUADSPI availability and features across STM32
families and committed in the datasheet of the product.

The layout should be as good as possible in order to get the best performances. To get on
PCB routing guidelines, refer to the application note Getting started with STM32F7 Series
MCU hardware development (AN4661) section “Quadrature serial parallel interface (Quad
SPI)”, available on the ST website.

4.3.3 Chip-select high time (CSHT)

When the QUADSPI sends two commands, one immediately after the other, it raises the
chip-select signal (nCS) high between the two commands for only one CLK cycle by default.

If the Flash memory requires more time between commands, the chip-select high time
CSHT[2:0] field in the QUADSPI_DCR register can be used to specify the minimum number
of QSPI_CLK cycles (up to eight) that nCS must remain high.

AN4760 Rev 3 49/95

AN4760 QUADSPI configuration

94

4.3.4 CKMODE

The clock mode indicates the level that CLK takes between commands when nCS is high.
Two modes are supported when nCS is high: mode 0 where CLK stays low and mode 3
where CLK stays high.

Figure 27. Chip select high time: CSHT = two clock cycles

4.3.5 Some considerations when using QUADSPI in classical SPI mode

When using the Quad-SPI interface in classical SPI mode, the user should consider the
following equivalences:

• Mode 0 for QUADSPI is equivalent to CPOL = 0 and CPHA = 0 for classical SPI

• Mode 3 for QUADSPI is equivalent to CPOL = 1, and CPHA = 1 for classical SPI

The main difference between the two modes is the clock polarity when the bus master is in
Standby mode and not transferring any data.

• SCLK stays at logic low state with CPOL = 0, CPHA = 0

• SCLK stays at logic high state with CPOL = 1, CPHA = 1

Note: Full duplex is not supported when using the Quad-SPI interface in classical SPI mode, only
half duplex is supported.

The following figure shows a classic SPI frame example highlighting the Quad-SPI clock
modes equivalence with classical SPI.

Figure 28. QUADSPI in classical SPI mode frame example

MSv41120V1

nCS

SCLK

BK1_IO0

BK1_IO1

BK1_IO2

BK1_IO3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CSHT

Command n Command n+1

CLKMODE = 0

MSv41196V1

Mode 0 SCLK

Mode 3 SCLK

nCS

SI

SO

MSB

MSB

Programming Quad-SPI Flash memory AN4760

50/95 AN4760 Rev 3

5 Programming Quad-SPI Flash memory

This section describes how to program a Quad-SPI Flash memory in the following use
cases:

• For an end application development: in this case the Quad-SPI memory is
programmed during the development of the product with static data or code to be used
in the final product. A dedicated Flash memory loader is needed in order to place the
data or the code to be used in the application. The Flash loaders provided by ST can
be used for programming if the user is using one of the ST EVAL or Discovery boards,
otherwise the user should develop its own Flash memory loader.

• On-the-fly when application is running: in this case the Quad-SPI Flash memory is
used in a final product as an external mass-storage device, this permits the application
to store data any time that it is needed.

Note: For both cases the programming principle is the same. The only difference is that in the first
case, the programming operation is performed with a tool and a Flash memory loader during
the application’s development, while in the second case the programming operation is
performed during a running application in a final product. Only the Indirect mode should be
used for programming regardless if it is a writing or an erasing operation.

Depending on the used Flash memory brand, different programming commands are
available, so it is up to the user to configure the desired command supported by the device.

The instruction, address and data phases can be sent in one, two or four lines for command
phase depending on the device brand.

The 4-byte address mode can be used to program the Quad-SPI Flashes with sizes up to
4 Gbytes.

The Automatic-polling mode can be used for waiting while the programming operation is
ongoing; when the operation is completed an interrupt can be generated.

5.1 Programming code or data for an end application

This section describes how to program either static code or data to be used in the final
application.

• Programming code for end application: the code for the application is placed in the
Quad-SPI memory to be executed by the CPU and then to be extended to the on-chip
internal memory. An example of storing code in Quad-SPI Flash memory is described
in Section 6.2: Executing from external Quad-SPI memory: extend internal memory
size.

• Programming data for end application: this is useful in graphical applications, for
example to store graphic content such as icons or images. An example of storing data
in Quad-SPI Flash memory for an end application is described in Section 6.1: Reading
data from Quad-SPI memory: graphical application.

To program the Quad-SPI Flash for an end application, either the STM32 ST-LINK utility or
the integrated development environment can be used. This operation is done using the
debug interface (SW, JTAG) through the STM32.

AN4760 Rev 3 51/95

AN4760 Programming Quad-SPI Flash memory

94

Figure 29. Programming Quad-SPI memory through debug interface

External Flash loader: A dedicated algorithm is used to perform the programming
operation. The algorithm is loaded to the STM32 through the debug interface then executed
to perform the programming operation. The inputs for the algorithm are the binary file to be
programmed.

Only the Quad-SPI Flash loaders for the memories mounted on STM32 Evaluation and
Discovery boards are provided. For other hardware, the user has to develop its own custom
loader.

5.1.1 Programming Quad-SPI Flash memory using
the STM32 ST-LINK utility

When the used IDE is not supporting the Quad-SPI memory programming capability such
as System Workbench for STM32, the user can simply use the STM32 ST-LINK utility tool.

How to create a new Quad-SPI Flash memory loader and add it to the ST-LINK
utility

For each hardware configuration and for each Quad-SPI Flash memory brand, a dedicated
Flash memory loader should be developed. The user has to develop its own dedicated
Flash memory loader (.stldr file) if the hardware used is other than ST boards.

A project is provided in the ST-LINK utility install directory “STMicroelectronics\STM32 ST-
LINK Utility\ST-LINK Utility\ExternalLoader\N25Q256A_STM32L476G-EVAL_Cube”
allowing the user to develop an external loader for a N25Q256A Flash memory on the
STM32L476G-EVAL board. This project can be easily tailored to the user dedicated
hardware to generate the external loader.

For more details on how to develop an external Quad-SPI Flash memory loader for the
STM32 ST-LINK utility, refer to the user manual STM32 ST-LINK Utility software description
(UM0892), section “Developing custom loaders for external memory” available at
www.st.com.

Caution: The tool chain/compiler used to generate the HEX/BIN file to program the Quad-SPI
memory must be exactly the same as the one used for the application development.

The dedicated Flash-memory loader has to be added to the ST-LINK utility in order to be
able to program a Quad-SPI Flash memory.

MSv41121V2

STM32Quad-SPI
Flash

Debug
STLink

Q
U

A
D

SP
I

.BIN
.HEX

Programming Quad-SPI Flash memory AN4760

52/95 AN4760 Rev 3

How to add a Quad-SPI Flash memory loader to the ST-LINK utility

To add an external Flash memory loader, go to the External Loader then click on the Add
External Loader button.

Figure 30. STM32 ST-LINK utility: adding Quad-SPI Flash memory loader

A window appears where the user should select their device. See an example below:

Figure 31. STM32 ST-LINK utility: selecting Quad-SPI Flash memory loader

Note: Only one external loader can be added, otherwise the error message in the figure below
appears. The user can remove one external loader and replace it with another one if
needed.

Figure 32. STM32 ST-LINK utility: error message

AN4760 Rev 3 53/95

AN4760 Programming Quad-SPI Flash memory

94

How to program Quad-SPI Flash memory using the ST-LINK utility

To program the Quad-SPI Flash memory follow the steps below:

1. Connect the board using the USB cable through the ST-LINK debug.

2. In the External Loader go to the added external Flash memory loader then select
Program as shown below

Figure 33. STM32 ST-LINK utility: programming Quad-SPI Flash memory

3. The following window appears allowing the user to browse to the data file to be stored
in the Flash memory, which can be a binary file, an HEX file or Motorola S-record files
(.srec or .s19).

Figure 34. STM32 ST-LINK utility: selecting HEX file for programming

Programming Quad-SPI Flash memory AN4760

54/95 AN4760 Rev 3

Erasing Quad-SPI memory

To perform a mass-erase operation select Mass Erase, to erase sectors click on Sector
Erase then select the sectors to be erased as shown in the figure below.

Figure 35. STM32 ST-LINK utility: erasing sectors

AN4760 Rev 3 55/95

AN4760 Programming Quad-SPI Flash memory

94

5.1.2 Programming Quad-SPI Flash memory using IDE

Programming Quad-SPI Flash memory using Keil

In the user project either the code, the data region or both that are to be programmed in the
Quad-SPI memory have to be specified to the linker before programming.

The following example shows how to add a Quad-SPI memory dedicated load region in a
Keil scatter file where also an execute region is created, enabling the execution of the code
from the Quad-SPI memory.

; ***

; *** Scatter-Loading Description File generated by uVision ***

; ***

LR_IROM1 0x08000000 0x00100000 { ; load region size_region

 ER_IROM1 0x08000000 0x00100000 { ; load address = execution address

 *.o (RESET, +First)

 *(InRoot$$Sections)

 .ANY (+RO)

 }

 RW_IRAM1 0x20000000 0x00050000 { ; RW data

 .ANY (+RW +ZI)

 }

 }

LR_QSPI 0x90000000 0xFFFFFFF {

ER_QSPI 0x90000000 0xFFFFFFF {

*.o (.textqspi)

}

}

Programming Quad-SPI Flash memory AN4760

56/95 AN4760 Rev 3

How to add a Quad-SPI Flash memory loader to Keil MDK-ARM

To add the Quad-SPI Flash memory loader, go to Options for Target then in the Options
Target window select the Debug tab then click on the Settings button as shown in the figure
below.

Figure 36. Adding Quad-SPI Flash memory loader to Keil MDK-ARM project

The Quad-SPI Flash memory loader is then added in the following window.

AN4760 Rev 3 57/95

AN4760 Programming Quad-SPI Flash memory

94

Figure 37. Adding Quad-SPI Flash memory loader to Keil MDK-ARM project

In the following window, select from the list the corresponding Flash memory loader:

Figure 38. Selecting Quad-SPI Flash memory programming algorithm

Once the corresponding Flash memory loader is added it appears in the programming
algorithm list as shown in the figure below.

Programming Quad-SPI Flash memory AN4760

58/95 AN4760 Rev 3

Figure 39. Quad-SPI Flash memory loader programming algorithm configuration

Once the Quad-SPI Flash memory loader is added, programming can be done by clicking
on the Load button or pressing the F8 key on the keyboard.

Note: The region to be programmed is defined by default in the external loader and can be
changed by changing the start address and the size fields.

How to proceed to program Quad-SPI Flash memory only once

During an application development, the user needs to debug its project and needs to load
the code to the internal Flash memory many times. For each load-Flash operation, the
Quad-SPI Flash memory is loaded as well, which makes the loading operation too long. In
this case, if the user already loaded data to the Quad-SPI Flash and does not need to
repeat the operation, the user can simply generate the QUADSPI data related symbol
definition file and add it to the project. The symbol definition file is a *.txt file for Keil MDK-
ARM and a *.o file for IAR EWARM; it should replace, in the project, the original source code
files (*.c or *.h) that were already programmed.

Another easier alternative consists in simply removing the already added Quad-SPI Flash
memory loader.

STM32 system workbench

The STM32 system workbench does not support a Quad-SPI external Flash-loader, the
user can use the STM32 ST-LINK utility instead as previously described.

AN4760 Rev 3 59/95

AN4760 Programming Quad-SPI Flash memory

94

5.2 Storing and erasing data on the fly during running
application

5.2.1 Storing data

It is useful in some applications to use the external Quad-SPI Flash memory for data
storage. In that case, the Quad-SPI interface has to be configured in Indirect-write mode to
permit the on-the-fly data storage. Data to be stored can be the result of a processing such
as signal processing for audio applications; it can also be storing images captured by a
camera through the digital camera interface DCMI or any other data.

Before every programming operation an erasing operation has to be performed. Indirect-
write mode has to be used for this operation.

Note: The writing speed of the external Flash memory is slower than its reading speed. As
programming operation takes a considerable period of time, the user can use Status-flag
polling mode to poll the memory status register and once operation competed an interrupt
could be enabled.

The steps to perform a programming operation are listed below:

1. Configure the Quad-SPI interface in the QUADSPI_CR and QUADSPI_DCR registers.

2. Configure the Flash memory: enable writing to Flash, set the dummy cycles number
depending on the dock speed.

3. Configure the frame format in the QUADSPI_CCR register and start the programming
sequence.

4. After the programming sequence has finished. Configure the QUADSPI in polling mode
to check the memory status and confirm if it is ready.

The following figure shows an example of a page programming sequence where the page
size is 256 bytes.

Note: Data byte 1 is written first to the data register QUADSPI_DR then data byte 256 is the last.
When writing a 32-bit word to QUADSPI_DR register, note that the LSB byte is written first
to the FIFO then transmitted first.

Figure 40. Quad I/O page program sequence (command 0x38)

Programming Quad-SPI Flash memory AN4760

60/95 AN4760 Rev 3

Either CPU with interrupts or DMA can be used for programming Quad-SPI memory as
follow.

1. Programming Quad-SPI memory using Indirect-write mode

When using Indirect-write mode, all programming operations are handled by software by
writing directly to the QUADSPI_DR register. An interrupt is generated when a transfer
complete is identified or if FIFO threshold is reached.

2. Programming Quad-SPI memory using Indirect-write mode with DMA

It is generally recommended to use DMA to program the Quad-SPI memory using Indirect-
write mode since it offloads the CPU, nevertheless the final recommendation depends on
the user application. In some cases, where the amount of data to be written to the memory
is relatively small, there is no need to use DMA. Once the DMA is configured and the
programming operation has started, no intervention from the CPU is needed and the
operation ends autonomously. For more details on DMA usage, refer to Section 3.5.2: DMA
usage.

3. Usage of Status-polling mode

The user can use this mode to poll the memory status register. The figure below shows an
example of a status-register reading sequence.

Figure 41. Read status register sequence (command 0x05)

5.2.2 Erasing data

An erasing operation has to be performed before every programming operation. Indirect-
write mode have to be used for this operation as well as for programming.

The configuration required to perform an erasing operation is the same as the one required
to perform a programming operation, except that no data has to be written to the memory.
As the data phase is not needed, only the instruction and the address phases are required.

As erasing operation takes a period of time, the user can use Status-flag polling mode to poll
the memory status register. Once the operation is completed an interrupt can be enabled:

The steps to perform an erasing operation are listed below:

1. Configure the Quad-SPI interface in the QUADSPI_CR and QUADSPI_DCR registers

2. Configure the Flash memory: enable writing to Flash

3. Configure the frame format and the indirect mode in the QUADSPI_CCR register

4. Send the erasing command and address if needed (address is needed for sector
erasing)

5. Put the Quad-SPI interface in Status-polling to poll the end of the operation.

AN4760 Rev 3 61/95

AN4760 Programming Quad-SPI Flash memory

94

Most of the Flash memory devices support a sector erasing and a full-chip erasing operation
and some of them support an additional erasing operation offering more flexibility to users
applications. Refer to the manufacturer’s datasheet for more details on the supported
erasing operations.

Note: If the used memory size is larger than 16 Mbytes, 4-bytes address mode have to be used, in
this case the user should choose the 4-byte command from the memory datasheet.

Sector-erase sequence

To erase a sector on the memory, a sector-erase command and a starting sector address
should be sent.

Example: to perform a sector-erase operation on the MICRON N25Q512A memory, the
QUADSPI_CCR register should be configured as below:

QUADSPI->CCR = 0x000025D8; /* Instruction= 0xD8; IMODE = 0x01; ADMODE=
0x01; ADSIZE = 0x02 */

QUADSPI->AR = 0x00000000; /* Address 0x00000000 is sent to erase the first
sector */

See below an example of a sector-erasing sequence:

Figure 42. Sector erase sequence

Full-chip erase sequence (bulk erase)

There is no need to send an address in order to erase the whole memory, sending a
command is enough. See below an example of a chip-erase sequence:

Figure 43. Example: full chip-erase sequence

QUADSPI application examples AN4760

62/95 AN4760 Rev 3

6 QUADSPI application examples

This section provides some typical QUADSPI use case examples showing how to use the
interface in Indirect-mode, Status-flag polling mode and Memory-mapped mode.

Some of these examples are provided in the STM32Cube firmware package while others
are based on other application notes also available on the ST website. Some hardware
implementation examples are provided as well at the end of this section.

This section describes the following use cases:

• Memory-mapped mode: reading data in a graphical application

• Memory-mapped mode: executing code from the Quad-SPI Flash memory

• Indirect mode: storing data on-the-fly during a running application

• Indirect mode: erasing data

• Hardware implementation example

6.1 Reading data from Quad-SPI memory: graphical application

As the graphical applications require a large amount of static data (font libraries, HMI style,
icons), the external Quad-SPI Flash memory can be fully dedicated to the static data
storage. This section provides two graphic use cases where the QUADSPI is used for data
storage:

• Frame buffer content generation from the Quad-SPI memory

• Displaying images directly from the Quad-SPI memory

6.1.1 Frame buffer content generation from Quad-SPI memory

This section provides an example where the DMA2D peripheral is reading images stored in
the external Quad-SPI Flash memory to write them on the external SDRAM. It also prepares
the frame buffer content to be read by LTDC and then displayed on a TFT-LCD display.

The example is based on a software demonstration from the STM32F7Cube firmware
package available on the ST website. This example includes one project that has been
developed for the STM32F746G-DISCO board.

The project is located on the following path: STM32Cube_FW_F7_V1.14.0\Projects\
STM32746G-Discovery\Applications\QSPI\QSPI_perfs

Use case description

This example describes how to use pictures stored on the Quad-SPI Flash memory to build
frame buffer content.

The DMA2D is used to render several animated layers on the LCD-TFT. All pictures and
icons are stored in the Quad-SPI Flash memory. The DMA2D is used to transfer pictures
from the Quad-SPI Flash memory to the SDRAM memory. During this transfer, the transfer
time is measured, then the transfer speed is calculated and displayed on the TFT-LCD.

At the same speed, the DMA2D is blending images and loading them to the SDRAM (frame
buffer) while the LTDC is updating the LCD-TFT at 60 Hz.

AN4760 Rev 3 63/95

AN4760 QUADSPI application examples

94

Figure 44. QUADSPI usage in a graphical application

Storing images and icons to be used for the application

All images and icons that are needed for the application should be stored on the external
Quad-SPI memory. Six images and three icons are available in the project, all of them are
included in the “main images.c” file, where each one is defined as a constant in a dedicated
header file.

In this project configuration, only two images (img2 and img6 defined respectively in files
“img2.h” and “img6.h”) and three icons (icon_S, icon_T and icon_M defined respectively in
the files “icon_S.h”, “icon_T.h” and “icon_M.h”) are used and need to be stored to the Quad-
SPI Flash memory.

The icons and the images are defined as constants. In order to store these icons and
images to the Quad-SPI memory, they are placed in a dedicated section “.textqspi” as
described below:

• Img2 and img6 definition

__attribute__((section(".textqspi"))) const unsigned char img2[261120] = {}

__attribute__((section(".textqspi"))) const unsigned char img6[261120] = {}

• Icon_S, icon_T and icon_M definition:

__attribute__((section(".textqspi"))) const unsigned char icon_S[30800] =
{}

__attribute__((section(".textqspi"))) const unsigned char icon_T[30800] =
{}

__attribute__((section(".textqspi"))) const unsigned char icon_M[42000] =
{}

LCD-TFT

16 MB Quad-SPI Flash

RGB

LTDC

FMC

QUADSPIC
hr

om
-A

R
T

D
M

A
2D

Chrom-ART DMA2D building frame buffer content
LTDC displaying images on the LCD

SDRAM
frame buffer

QUADSPI application examples AN4760

64/95 AN4760 Rev 3

As explained in Section 5.1.2: Programming Quad-SPI Flash memory using IDE, to
program the Quad-SPI memory using Keil MDK-ARM or IAR EWARM, a dedicated section
for all the data to be programmed should be created.

Following the QUADSPI section “.textqspi” in the Keil MDK-ARM scatter file:

LR_IROM2 0x90000000 0xFFFFFFF { ; load region size_region

 ER_IROM2 0x90000000 0xFFFFFFF { ; load address = execution address

*.o (.textqspi)
 }

}

To program data to Quad-SPI Flash, the user should first check if the Quad-SPI Flash
loader is added to the project (Keil MDK-ARM or IAR EWARM). If it is already added, the
user can simply build the project and program the memory. For more details on project
configuration refer to the readme file in the project directory.

Quad-SPI interface and memory configuration

The QUADSPI is configured in Memory-mapped mode to permit the DMA2D to read images
and icons from the QUADSPI and to write into the SDRAM through the FMC interface.

The Cortex®-M7 runs at 200 MHz while the QUADSPI speed is 100 MHz. At this clock
speed, the maximal reachable throughput is 50 Mbytes per second. The QUADSPI is
configured to operate in 1-4-4 mode. Since the embedded Quad-SPI memory does not
support the DDR mode, the SDR mode is used.

The used read command is the QUAD INPUT/OUTPUT FAST READ (0xEB) which permits
to send the address in four lines and read data in four lines while the command is sent in
one line.

The STM32F7 Series smart architecture permits an offload of the CPU. The DMA2D acts as
an AHB master and performs all transfers from the QUADSPI to the frame buffer (SDRAM)
instead of the CPU. At the same time, when the LTDC is displaying graphics, the Cortex®-
M7 can execute code from the internal Flash memory.

This demonstration shows how to interface a 16-Mbyte external Flash memory with the
STM32F7x6 device.

The Quad-SPI Flash memory is used as a non-volatile support containing all graphics
(icons, images) needed in the application.

AN4760 Rev 3 65/95

AN4760 QUADSPI application examples

94

Figure 45. DMA2D reading images from Quad-SPI to build frame buffer content

6.1.2 Displaying images directly from the Quad-SPI memory

As previously mentioned, all AHB masters can access the Quad-SPI memory in Memory-
mapped mode. This is a very interesting feature when the application requires to display
Quad-SPI stored graphics directly on the LCD without any CPU intervention.

This section provides an example where the LTDC peripheral reads an image stored in the
external Quad-SPI Flash memory. The example is based on a software demonstration from
the application note “Managing low-power consumption on STM32F7 Series
microcontrollers” (AN4749).

The AN4749 is provided with the X-CUBE-LPDEMO-F7 software package and is available
on the ST website. It includes one project that has been developed for the STM32F746G-
DISCO board.

Note: This application note described only the QUADSPI usage in the use case.

Software demonstration description

An image “screensaver” is located in three different regions: the internal Flash memory, the
external Quad-SPI Flash memory at the address 0x90000 000 and the SDRAM at the
address 0xC000 0000. The user must choose from which region the LTDC should display
the image.

At first run, the time is displayed on the LCD-TFT for five seconds, then a menu appears
showing a box where the user can choose the memory location from which the image is
read. If the Quad-SPI Flash memory is selected, then the LTDC reads the image directly
from the external Flash memory. See a graphical view of this use case below.

Bus mutliplexer

32-bit AHB bus

Mac Ethernet , LCD-TFT and DMA2D are not available on STM32F72xxx and STM32F73xxx devices.1

A
R

T

Arm Cortex-M7

AXIM AHBP

L1-cache G
P

D
M

A
1

M
A

C

Et
he

rn
et

U
SB

O

TG
 H

S

LD
TC

D
M

A
_P

1

D
M

A
_M

E
M

1

D
M

A
_M

E
M

2

D
M

A
_P

2

Flash
memory

SRAM1
SRAM2

AHB2 peripheral
AHB1 peripheral

D
M

A
2D

AHBS
ITCM

DTCM RAM
ITCM RAM

DTCM

APB1

APB2

64-bit AHB
64-bit bus matrix

1 1 1

32-bit bus matrix-S

64-bit AHB bus

Masters accessing
QUADSPI

Quad-SPI interface

QUADSPI registers
access
QUADSPI memory-
mapped region access

AXI to muti AHB
G

P
D

M
A

2

Registers

Memory-mapped region

Slaves

IT
C

M

FMC
LTDC fetches data from
framebuffer to display it
on the LCD

DMA2D transfers data
from Quad-SPI memory
to SDRAM

In parallel CPU fetches
instructions from Flash
AXIM

QUADSPI application examples AN4760

66/95 AN4760 Rev 3

Figure 46. LTDC reading an image directly from Quad-SPI memory

Storing the image to be used for the application

For this application the image should be stored only once to be used in the end application
(final product).

The image to be programmed is defined in the RGB565_480x272.h file as a constant data
and is located in the RGB565_480x272_qspi dedicated section. The process to place the
image in this section with Keil MDK-ARM is described below:

const uint16_t RGB565_480x272_QSPI[]
__attribute__((section(".RGB565_480x272_qspi")));/* Keil MDK-ARM: placing
the image in .RGB565_480x272_qaspi section */

const unit16_t RGB565_480x272_QSPI[]={};

As explained in Section 5.1.2: Programming Quad-SPI Flash memory using IDE, to
program the Quad-SPI memory using Keil MDK-ARM or IAR EWARM, a dedicated section
for all the data to be programmed should be created.

Following the QUADSPI section “.RGB565_480x272_qspi” in the Keil MDK-ARM scatter
file:

LR_IROM2 0x90000000 0xFFFFFFF { ; load region size_region

 ER_IROM2 0x90000000 0xFFFFFFF { ; load address = execution address

*.o (.RGB565_480x272_qspi);

}

}

To program data to the Quad-SPI Flash memory, the user should first check if the Quad-SPI
Flash loader is added to the project (Keil MDK-ARM or IAR EWARM). It if is already added,
the user can simply build the project and program the memory. For more details on the
project configuration, refer to the readme file in the project’s directory.

Quad-SPI interface and memory configuration

The QUADSPI is configured in Memory-mapped mode to allow the LTDC to read the image
directly from the Quad-SPI memory.

Bus mutliplexer

32-bit AHB bus

A
R

T

Arm Cortex-M7

AXIM

L1-cache LT
D

C

Flash
memory

ITCM

DTCM RAM
ITCM RAM

DTCM

32-bit bus matrix-S

Masters accessing
QUADSPI

Quad-SPI interface

QUADSPI registers
access

QUADSPI
memory-mapped
region access

D
M

A
2D

SRAM1

Slave

LTDC reading
image from Quad-
SPI memory

Registers

AXI to muti AHB

Memory-mapped region

AN4760 Rev 3 67/95

AN4760 QUADSPI application examples

94

Once the QUADSPI is configured, to display the image stored in the Quad-SPI memory, the
following API is called in the LCDConf.c file: HAL_LTDC_ConfigLayer(&hltdc_F,
&pLayerCfg, 0).

pLayerCfg is the pointer to a LTDC_LayerCfgTypeDef structure that contains the address of
the image in the Quad-SPI memory.

6.2 Executing from external Quad-SPI memory: extend internal
memory size

Using the external Quad-SPI memory permits an extension of the total available memory
space of the application. The STM32F746 device embedded on the Discovery or the
Evaluation boards integrates 1-Mbyte Flash memory; hence connecting an external Quad-
SPI Flash memory extends the available memory space to 64 Mbytes for the evaluation
board.

This section describes how to use the external Quad-SPI memory to extend the internal
Flash memory in order to enable code execution from the external Quad-SPI memory. The
software demonstration from application note STM32F7 Series system architecture and
performance (AN4667) is selected as a reference to show how to:

• Configure the Quad-SPI in Memory-mapped mode during the system initialization and
before jumping to the Quad-SPI memory code

• Place application’s code in the external Quad-SPI memory

Software demonstration description

The AN4667 is provided with the X-CUBE-32F7PERF embedded software package
available on the ST website which includes two projects: STM32F7_performances and
STM32F7_performances_DMAs. Both projects are provided with Keil MDK-ARM tool chain.
This section focuses on STM32F7_performances project.

The STM32F7_performances project shows STM32F746 device performance when
executing code from the internal and external memories. It includes seven configurations
where each one allows to select the data and the code’s locations. Since this section focus
on describing the code execution from the Quad-SPI memory, only 6_1-Quad-SPI_rwRAM-
DTCM and 6_2-Quad-SPI_rwRAM-DTCM configurations are taken into consideration for
the demonstration description.

The number of cycles consumed by the FFT process is calculated based on the system-tick
timer. The example was run on the STM32756G-EVAL and the results are shown on the
LCD-TFT or on the hyperterminal through the UART or on the IDE printf viewer.

The configuration is displayed and shows the current project configuration, the system
frequency, the different configurations of caches, ART, ART-Prefetch (ON/OFF) and the
memory configuration in case of an external memory (SDRAM or Quad-SPI).

The software demonstration is developed for STM32756G-EVAL board and can be easily
tailored to the STMF746-DISCO board. For more details on this application note refer to the
AN4667 document available at www.st.com.

The STM32f7_performances project is located in the following path: x-cube-
32F7perf\STM32CubeExpansion_AN4667_F7_V4.0.0\Projects\STM32756G_EVAL\stm32f
7_performances.

QUADSPI application examples AN4760

68/95 AN4760 Rev 3

The figure below highlights the two project configurations in Keil MDK-ARM that are
described in this document.

Figure 47. Project configurations: executing code from Quad-SPI Flash memory

Projects configuration

For both project configurations, 6_1-QuadSPI_rwRAM-DTCM and 6_2-QuadSPI_rwRAM-
DTCM, the user can change the desired QUADSPI settings in the Options for Target box as
shown in the next figure.

Note that the operating system clock during system initialization is 16 MHz, so at this
moment the QSPI_CLK = fAHB/1 = 16 MHz (by default the prescaler = 0). Once the system
initialization is done, the CPU jumps to the main function (in arm_fft_bin_example_f32.c file)
where the system clock configuration is performed. The system clock is configured to run at
216 MHz.

Both project configurations have the following QUADSPI settings:

• QSPI_CLOCK_PRESCALER = 3

• System clock is 216 MHz => QSPI_CLK = 54 MHz

• QSPI_DDRMODE => DDR mode enabled

• QSPI_INSTRUCTION_1_LINE => instruction is issued in one line

• QSPI_XIP_MODE => execute in place with SIOO enabled.

AN4760 Rev 3 69/95

AN4760 QUADSPI application examples

94

Figure 48. Changing QUADSPI configuration in the project settings

6.2.1 Configuring Quad-SPI in Memory-mapped mode during system
initialization

Boot from Quad-SPI Flash memory is not supported, so the user can boot from internal
Flash memory, configure the QUADSPI peripheral in Memory-mapped mode and then jump
to execution from the external Quad-SPI memory.

In this example, the QUADSPI configuration is performed during the system initialization in
the SystemInit_ExtMemCtl() function in system_stm32f7xx.c file. All required QUADSPI
peripheral and Quad-SPI memory configurations are done in system-stm32f7xx.c file and
are described below.

QUADSPI application examples AN4760

70/95 AN4760 Rev 3

GPIOs configuration

As shown in the following figure, the Quad-SPI Flash memory is connected in Quad I/O
mode, so six GPIOs have to be configured for the Quad-SPI interface.

Figure 49. Quad-SPI Flash memory connection in STM32756-EVAL board

The Quad-SPI interface GPIOs configuration in the SystemInit_ExtmemCtl() function is
described below:

RCC->AHB1ENR |= 0x00000022; /* Enable GPIOB and GPIOF interface clock */

 /* Connect PB2 and PB6 pins to Quad-SPI Alternate function */

 GPIOB->AFR[0] = 0x0A000900;

 GPIOB->AFR[1] = 0x00000000;

 /* Configure PBx pins in Alternate function mode */

 GPIOB->MODER |= 0x00002020;

 /* Configure PBx pins speed to 100 MHz */

 GPIOB->OSPEEDR |= 0x00003030;

/* Configure PBx pins Output type to push-pull */

 GPIOB->OTYPER = 0x00000000;

 /* No pull-up, pull-down for PBx pins */

 GPIOB->PUPDR |= 0x00000000;

 /* Connect PF6, PF7, PF8 and PF9 pins to Quad-SPI Alternate function */

 GPIOF->AFR[0] |= 0x99000000;

 GPIOF->AFR[1] |= 0x000000AA;

 /* Configure PFx pins in Alternate function mode */

 GPIOF->MODER |= 0x000AA000;

 /* Configure PFx pins speed to 100 MHz */

 GPIOF->OSPEEDR |= 0x000FF000;

 /* Configure PFx pins Output type to push-pull */

 GPIOF->OTYPER = 0x00000000;

 /* No pull-up, no pull-down for PFx pins */

 GPIOF->PUPDR = 0x00000000;

AN4760 Rev 3 71/95

AN4760 QUADSPI application examples

94

Enabling QUADSPI peripheral

In order to configure the Quad-SPI memory, the QUADSPI peripheral should be enabled so
it can communicate with the external memory.

 /* Enable the Quad-SPI interface clock */

 RCC->AHB3ENR |= 0x00000002;

/* Reset QSPI peripheral */

RCC->AHB3RSTR |= (RCC_AHB3RSTR_QSPIRST); /* Reset */

RCC->AHB3RSTR &= ~(RCC_AHB3RSTR_QSPIRST); /* Release reset */

 /* Enable Quad-SPI peripheral */

 QUADSPI->CR = 0x00000001;

Quad-SPI memory configuration

Once the QUADSPI peripheral is enabled, it is possible to communicate with the Quad-SPI
memory in order to configure it in the desired operating mode. Referring to the MICRON
N25Q512A datasheet, the SDR single-SPI mode can be used to communicate with the
memory, meaning that the command, address and data are sent in one line in order to
configure the memory.

Note that the indirect Quad-SPI mode have to be used for external memory configuration.

Resetting the Quad-SPI memory:

Before resetting the Quad-SPI memory registers, the RESET ENABLE command 0x66
should be sent in 1-0-0 mode, so only the command is sent in Indirect mode while the
address and the data phases are skipped.

/* Send RESET ENABLE command (0x66) to allow memory registers reset*/

QUADSPI->CCR = 0x00000166;

To reset the Quad-SPI memory registers, the RESET command 0x99 should be issued in 1-
0-0 mode, only the command is sent in Indirect mode while the address and the data
phases are skipped.

/* Send RESET command (0x99) to reset the memory registers*/

QUADSPI->CCR = 0x00000199;

Configure the memory to receive commands in four lines:

In both project configurations, the Quad-SPI memory is configured to receive commands in
one line (QSPI_INSTRUCTION_1_LINE defined), but the memory can be configured to
receive the commands in four lines. If this is the desired mode, the user should use the
QSPI_INSTRUCTION_4_LINES define instead of the QSPI_INSTRUCTION_1_LINE.

To enable the QUADSPI operation, the enhanced volatile configuration register of the
N25Q512A external memory should be configured with 0x7F.

To write 0x7F to the enhanced volatile configuration register, the 0x61 command should be
sent. In this case, the QUADSPI should send 0x61 command and 0x7F data while no
address needs to be sent, then the used mode is 1-0-1.

/* Enable write cmd : 0x06. This to allow to write to enhanced volatile
register to allow instructions to be writen in 4 lines*/

while(QUADSPI->SR & 0x20); /* Wait for busy flag to be cleared */

QUADSPI->CCR = 0x0106;

QUADSPI application examples AN4760

72/95 AN4760 Rev 3

/* Write to Enhanced Volatile Configuration Register of the external memory
(MT25QL512): Enable quad I/O command input. Write to enhanced volatile
configuration register cmd = 0x61, Configuration: 0x7F*/

while(QUADSPI->SR & 0x20); /* Wait for busy flag to be cleared */

 QUADSPI->CCR = 0x01000161;

 while(!(QUADSPI->SR & 0x04)); /* Wait for FTF flag to be set */

 QUADSPI->DR = 0x7F;

 while(!(QUADSPI->SR & 0x02)); /* Wait for TCF flag to be set */

Enabling SIOO mode (named XIP mode in MICRON’s datasheet):
/* Enable write cmd: 0x06. This is done to allow to write to volatile
configuration register. For more details refer to MT25QL512 datasheet. */

QUADSPI->CCR = (0x0106 | QSPI_CCR_IMODE);

while(QUADSPI->SR & 0x20); /* Wait for busy flag to be cleared */

/* Configure the Quad-SPI in 1-0-1 mode to write to VOLATILE CONFIGURATION
REGISTER*/
QUADSPI->CCR = (0x00000081 | QSPI_CCR_IMODE | QSPI_CCR_DMODE);

while(!(QUADSPI->SR & 0x04)); /* Wait for FTF flag to be set */

/* Write 0x83 to volatile configuration register: bit 3 = 0 to enable XIP,
and bits [7:4] = 8 to set eight dummy cycles*/

QUADSPI->DR = ((MEM_DUMMY_CYCLE_XIP << 4) | 0x3);

while(!(QUADSPI->SR & 0x02)); /* Wait for TCF flag to be set */

QUADSPI peripheral configuration

Configure QUADSPI peripheral (QUADSPI_CCR register):

Once the Quad-SPI memory is configured, the Quad-SPI interface should be configured in
Memory-mapped mode; the frame format is set in QUADSPI_CCR register as described
below:

• Use DTR QUAD INPUT/OUTPUT FAST READ command: INSTRUCTION [7:0] =
0xED

• Send command in one line: IMODE = 0b01

• Send address in four lines: ADMODE = 0b11

• Configure 3 bytes address: ADSIZE = 0b10

• Send alternate-byte in four lines: ABMODE = 0b11

• Configure 1 alternate-byte: ABSIZE = 0b00

• Receive data in 4 lines: DMODE = 0b11

• Configure 7 dummy cycles: DCYC = 0b00111

• Enable memory-mapped mode: FMODE = 0b11

• Enable SIOO mode: SIOO = 1

• Enable DDR mode: DDRM = 1

AN4760 Rev 3 73/95

AN4760 QUADSPI application examples

94

As SIOO mode is enabled (called XIP in MICRON datasheet), an alternate-byte have to be
sent (QUADSPI_ABR = 0x00) at every new read sequence in order to keep the Quad-SPI
memory in SIOO mode.

According to MICRON’s datasheet, a latency of eight dummy cycles before receiving data
should be set when using 0xED command in Extended-SPI mode. It depends also on the
QSPI_CLK.

Only seven dummy cycles are configured for QUADSPI peripheral, however it is eight
cycles on the Quad-SPI memory side; this is due to the additional alternate-byte cycle that is
needed in order to send one byte in DDR mode.

After the address phase, there are in total a latency of eight cycles before the data phase:
seven dummy cycles + one alternate-byte cycle.

See below the configuration code:

QUADSPI -> CCR = (0x0F002C00 | QSPI_CCR_DDRM | QSPI_CCR_DCYC |
FAST_READ_CMD | QSPI_CCR_IMODE | QSPI_CCR_SIOO | QSPI_CCR_ABMODE);

Configure QUADSPI peripheral (QUADSPI_CR register)

The user can choose to operate either in DDR or in SDR mode, depending on the project
configuration. The configuration by default is the QSPI_DDRMODE defined in both
configurations. Since the DDR mode is enabled, the delayed sample shifting must be
disabled.

The following code describes how to enable or disable the DDR mode and how to configure
the prescaler and the Quad-SPI memory size:

#ifdef QSPI_DDRMODE

QUADSPI->CR |= QSPI_CLK_PRESCALER; /* SSHIFT = 0 delayed sample shifting
disabled in DDR mode */

#else

QUADSPI->CR |= QSPI_CLK_PRESCALER | 0x10 ; /* 0x10: SSHIFT = 1 */

#endif

QUADSPI->DCR = 0x00190000; /* Memory size: 512 Mb (64MB): 2^(26-1) ->
2^(25) -> 2^(0x19)*/

#endif

6.2.2 Placing application code in external Quad-SPI memory

The code to be loaded in the Quad-SPI memory consists of calculation algorithms used to
get the maximum energy bin in the frequency domain of an input signal using complex FFT,
complex magnitude, and maximum functions.

To place this code in the external Quad-SPI memory a dedicated load region should be
created in the linker file of the project. Two project configurations are available in the project:
one where the code of the application and the constant data are both placed in the Quad-
SPI memory, and the other where the code of the application is placed in the Quad-SPI
memory where the constant data is placed in the ITCM Flash. For both project
configurations the L1-DCache is enabled.

QUADSPI application examples AN4760

74/95 AN4760 Rev 3

Code and constant data are all placed in Quad-SPI memory:
6_1-Quad-SPI_rwRAM-DTCM

In this project configuration, the application code and its related constant data are both
placed in the Quad-SPI memory; so the Cortex®-M7 have to fetch them from the external
memory.

All remaining project codes as the peripheral drivers and the vector tables are placed in the
Flash memory ITCM. The following figure describes the 6_1-Quad-SPI_rwRAM-DTCM
project configuration.

Figure 50. 6_1-Quad-SPI_rwRAM-DTCM project configuration: code and data in
Quad-SPI memory

To place code and constant data in the Quad-SPI memory a dedicated load region has to be
created as shown in the following Keil MDK-ARM scatter file:

; ***

; *** Scatter-Loading Description File generated by uVision ***

; ***

LR_IROM1 0x00200000 0x00100000 { ; load region size_region

 ER_IROM1 0x00200000 0x00100000 { ; load address = execution address

 *.o (RESET, +First)

 *(InRoot$$Sections)

 ; Place all remaining code and const data in Flash TCM.

 .ANY (+RO)

 }

}

Bus mutliplexer

32-bit AHB bus

A
R

T

Arm Cortex-M7

AXIM AHBP

L1-cache G
P

D
M

A
1

M
A

C

Et
he

rn
et

U
SB

O

TG
 H

S

LD
TC

D
M

A
_M

E
M

1

D
M

A
_M

E
M

2

D
M

A
_P

2

Flash
memory

SRAM

D
M

A
2D

AHBS
ITCM

DTCM RAM
ITCM RAM

DTCM

64-bit AHB
64-bit bus matrix

32-bit bus matrix-S

64-bit AHB bus

Masters accessing
QUADSPI

Quad-SPI interface

QUADSPI registers
access
QUADSPI memory-
mapped region access

AXI to muti AHB

G
P

D
M

A
2

Registers

Memory-mapped region

Slaves
IT

C
M

y pp g

Code execution from
QUADSPI with L1-Cache

ZI + RW + Stack + Heap
in DTCM

Flash ITCM ART on

All remaining project’s
code + data

Application’s code
+ constant data

Quad-SPI Flash

AN4760 Rev 3 75/95

AN4760 QUADSPI application examples

94

LR_IROM2 0x90000000 0x00100000 { ; load region size_region

 ER_IROM2 0x90000000 0x00100000 { ;load address = execution address

 arm_fft_bin_example_f32.o (+RO-CODE)

 arm_bitreversal2.o (+RO-CODE)

 arm_cfft_f32.o (+RO-CODE)

 arm_cfft_radix8_f32.o (+RO-CODE)
 arm_cmplx_mag_f32.o (+RO-CODE)
 arm_max_f32.o (+RO-CODE)

 arm_fft_bin_example_f32.o (+RO-DATA)

 arm_common_tables.o (+RO-DATA)

 arm_const_structs.o (+RO-DATA)

 }

RAM_RW_ZI 0x20000000 0x4000 {

.ANY (+RW +ZI)

 }

RAM_STACK 0x20004000 0x4000 {

.ANY (STACK)

}

RAM_HEAP 0x20008000 0x8000 {

.ANY (HEAP)

}

}

Code placed in Quad-SPI memory while constant data in Flash memory ITCM:
6_2-Quad-SPI_rwRAM-DTCM

In this project configuration, the application code is placed in the Quad-SPI memory while its
related constant data is placed in the Flash ITCM. The Cortex®-M7 have to fetch code from
the Quad-SPI memory and data from the Flash ITCM.

All remaining project codes as the peripheral drivers and the vector tables are placed in the
Flash memory ITCM. The figure below describes the 6_2-Quad-SPI_rwRAM-DTCM project
configuration.

QUADSPI application examples AN4760

76/95 AN4760 Rev 3

Figure 51. 6_2-Quad-SPI_rwRAM-DTCM project configuration: only code in Quad-SPI
memory

To place code and constant data in the Quad-SPI memory a dedicated load region has to be
created as shown in the following Keil MDK-ARM scatter file:

; ***

; *** Scatter-Loading Description File generated by uVision ***

; ***

LR_IROM1 0x00200000 0x00100000 { ;load region size_region

 ER_IROM1 0x00200000 0x00100000 { ;load address = execution address

*.o (RESET, +First)

 *(InRoot$$Sections)

 ; Place all remained code and const data in Flash TCM.

 .ANY (+RO)

 }

}

LR_IROM2 0x90000000 0x00100000 { ;load region size_region

ER_IROM2 0x90000000 0x00100000 { ;load address = execution address
arm_fft_bin_example_f32.o (+RO-CODE)

 arm_bitreversal2.o (+RO-CODE)

 arm_cfft_f32.o (+RO-CODE)

 arm_cfft_radix8_f32.o (+RO-CODE)

 arm_cmplx_mag_f32.o (+RO-CODE)

 arm_max_f32.o (+RO-CODE)

 }

Bus mutliplexer

32-bit AHB bus

A
R

T

Arm Cortex-M7

AXIM AHBP

L1-cache G
P

D
M

A
1

M
A

C

Et
he

rn
et

U
SB

O

TG
 H

S

LD
TC

D
M

A
_M

E
M

1

D
M

A
_M

E
M

2

D
M

A
_P

2

Flash
memory

SRAM

D
M

A
2D

AHBS
ITCM

DTCM RAM
ITCM RAM

DTCM

64-bit AHB
64-bit bus matrix

32-bit bus matrix-S

64-bit AHB bus

Masters accessing
QUADSPI

Quad-SPI interface

QUADSPI registers
access
QUADSPI memory-
mapped region access

AXI to muti AHB

G
P

D
M

A
2

Registers

Memory-mapped region

Slaves

IT
C

M
y pp g

Code execution from
QUADSPI with L1-Cache

ZI + RW + Stack + Heap
in DTCM

Flash ITCM ART on

* All remaining
project’s code + data

* Application’s
constant data

Application’s code

Quad-SPI Flash

AN4760 Rev 3 77/95

AN4760 QUADSPI application examples

94

RAM_RW_ZI 0x20000000 0x4000 {

.ANY (+RW +ZI)

 }
RAM_STACK 0x20004000 0x4000 {

.ANY (STACK)

}

RAM_HEAP 0x20008000 0x8000 {

.ANY (HEAP)

}

}

QUADSPI application examples AN4760

78/95 AN4760 Rev 3

Performances analysis

The results are obtained with the STM32756G-EVAL, the CPU is running at 216 MHz,
VDD=3.3 V and with seven wait-states access to the internal Flash memory. The QUADSPI
is configured in DDR 1-4-4 mode with SIOO enabled and QSPI_CLK = 54 MHz.

The table below shows the obtained results for FFT demonstration for MDK-ARM in each
configuration.

If the results of the case one and the case two of the “6-Quad SPI_rwRAM-DTCM”
configuration are compared, we note that there is a significant difference in terms of
performance since the demonstration uses a huge constant data.

• For the case one (6_1-Quad SPI_rwRAM-DTCM), since the read-only data and the
instructions are both located in the Quad-SPI Flash memory, a latency occurs due to
the concurrency access of the instruction fetch and the read-only data on the Quad-SPI
interface.

• For the case two (6_2-Quad SPI_rwRAM-DTCM), the read-only data and code are
separated. The read-only data is located in Flash-TCM, therefore, the concurrency of
the read-only data and the instruction fetch is avoided and the CPU can fetch the
instruction from AXI while the data is loaded from TCM at the same time. This is the
reason why the performance of the second case is clearly better than the first one.

By comparing the case 6_2-Quad-QPI_rwRAM-DTCM with the 5-RAMITCM_rwRAM-DTCM
(which gives the best performances at 112428 CPU cycles as per AN4667 document), it is
seen that it is they are close in terms of performances.

This is an example of how important it is to benefit from the STM32F7x5/F7x6 smart
architecture (in this example) in order to improve the execution performances from the
external Quad-SPI memory. For more details on how to improve the execution
performances from Quad-SPI memory, refer to Section 7.1: How to get the best
performances.

Table 15. Execution performances versus configuration

Feature configuration Memory location configuration
CPU cycle
number(1)

- 5-RAMITCM_rwRAM-DTCM 112428

I-cache + D-cache ON (constant data in Quad-SPI memory) 6_1-Quad-SPI_rwRAM-DTCM 171056

I-cache + ART + ART-PF ON (constant data in Flash TCM) 6_2-Quad-SPI_rwRAM-DTCM 126900

1. The number of cycles may change from a version to another of the tool chain.

AN4760 Rev 3 79/95

AN4760 QUADSPI application examples

94

6.3 Storing (programming) data on the fly during a running
application

Based on two examples from STM32Cube firmware, this section describes how to program
a Quad-SPI Flash memory on-the-fly while running an application. The programming can be
done either with a software by writing directly to the QUADSPI_DR register or by using
DMA.

The STM32Cube firmware package provides two examples of reading and programming
the Quad-SPI memory:

• QSPI_ReadWrite_DMA: using DMA

• QSPI_ReadWrite_IT: using interrupts.

These examples are provided for STM32L476G-EVAL, STM32446E-EVAL, STM32469I-
EVAL and STM32756G-EVAL boards and can be easily tailored to Discovery boards. This
section describes the STM32756G-EVAL programming examples.

Note: Since Flash memories need to be erased before writing; the user should perform an erasing
operation before programming the Flash memory. Only the region to be programmed need
to be erased; there is no need to perform a mass-chip erase operation if only one sector is
to be programmed.

6.3.1 QUADSPI indirect write: programming Quad-SPI memory using DMA

This section describes the STM32756G-EVAL example which is available on the
STM32Cube_FW_F7 in the
“Projects\STM32756G_EVAL\Examples\QSPI\QSPI_ReadWrite_DMA” directory.

This example shows how to program the Quad-SPI memory with data from the internal
SRAM. DMA2 is used to transfer the data from the internal SRAM to the Quad-SPI
interface. The data to be written “aTxBuffer” is a buffer generated on the SRAM. It contains
the string ****QSPI communication based on DMA****.

In this example, the following sequence is done in a forever loop:

1. Sector 1 of the Quad-SPI memory is erased

2. Data is written to the memory in DMA mode

3. Data is read in DMA mode to be compared with the source

– LED1 toggles each time a new comparison is good

– LED3 is on as soon as a comparison error occurs

– LED3 toggles as soon as an error is returned by HAL API.

This section focus on writing to the Quad-SPI memory. Thanks to the STM32F7x5/F7x6
smart architecture, the DMA can be used to program or to read the Quad-SPI Flash memory
and then to offload the CPU. Once the DMA is configured and the transfer is started, no
CPU intervention is needed. An interrupt can be generated once the transfer is completed.

QUADSPI application examples AN4760

80/95 AN4760 Rev 3

As described in the figure below, the DMA reads the data “aTxBuffer” from the SRAM and
writes it to the Quad-SPI memory, in the meanwhile the CPU can execute code from the
internal Flash.

Figure 52. Indirect write mode: programming Quad-SPI memory using DMA

QUADSPI GPIO and DMA configuration

The GPIOs and DMA2 are configured in the HAL_QSPI_MspInit() function in the
stm32f7xx_hal_msp.c file. The HAL_QSPI_MspInit() function is called in the
HAL_QSPI_Init() function which include all the QUADSPI required configurations.

The QUADSPI global interrupt is enabled. The GPIOs configuration is done with respect to
the Quad-SPI memory connection in the STM32756G-EVAL board.

DMA2 is configured as follows:

• DMA2 configuration: Stream 7 Channel 3 is enabled

• Memory Increment enabled

• DMA2 interrupt enabled.

Bus mutliplexer

32-bit AHB bus

A
R

T

Arm Cortex-M7

AXIM AHBP

L1-cache G
P

D
M

A
1

M
A

C

Et
he

rn
et

U
SB

O

TG
 H

S

LD
TC

D
M

A
_P

1

D
M

A
_M

E
M

1

D
M

A
_M

E
M

2

D
M

A
_P

2

Flash
memory

SRAM2

AHB2 peripheral
FMC

AHB1 peripheral

D
M

A
2D

AHBS
ITCM

DTCM RAM
ITCM RAM

DTCM

APB1

APB2

64-bit AHB
64-bit bus matrix

32-bit bus matrix-S

64-bit AHB bus

Masters accessing
QUADSPI

Quad-SPI interface

QUADSPI registers
access

QUADSPI
memory-mapped
region access

AXI to muti AHB

G
P

D
M

A
2

Registers

Memory-mapped region

SRAM1

Slave

Data is transferred
from SRAM by DMA
to be written to
Quad-SPI Flash

AN4760 Rev 3 81/95

AN4760 QUADSPI application examples

94

QUADSPI peripheral configuration

The QUADSPI peripheral is configured in the HAL_QSPI_Init() function as described below:

• Clock prescaler = 2 => QSPI_CLK = (HCLK / 3) = 72 MHz.

• FIFO threshold FTHRES = 0x03.

• Sample shifting delay is disabled.

• Flash size is set in QUADSPI_DCR register: the memory size is 64 Mbytes = 2[FSIZE+1]
= 2 [19 + 1] so FSIZE = 0x19.

• Chip-select high time (CSHT) is set to one cycle.

• QUADSPI peripheral is enabled by setting EN bit in QUADSPI_CR register.

Quad-SPI memory configuration

As previously mentioned, the write-enable command should be sent at first. This is done by
calling QSPI_WriteEnable() function.

Start programming sequence

To start the programming sequence, the QUADSPI_CCR register is configured in the
HAL_QSPI_Command() function as described below:

• Instruction: QUAD_IN_FAST_PROG_CMD (0x32)

• IMODE: one line

• ADMODE: one line

• ADSIZE: 24 bits

• DMODE: four lines

• FMODE: indirect mode

• The number of bytes to be written is set in the QUADSPI_DLR register in the
HAL_QSPI_Command() function. Number of bytes to be written = QUADSPI_DLR+1.

The programming sequence is started in HAL_QSPI_Transmit_DMA() function, so the
following configurations are done in this function:

• DMA direction configuration: DMA_MEMORY_TO_PERIPH

• The number of bytes to be transferred in S7NDTR register (S7NDTR =
QUADSPI_DLR+1)

• The DMA transfer is enabled by setting the DMAEN bit in the QUADSPI_CR register.

The address used in the QUADSPI_AR register is 0x0000 0000 as writing is performed in
the first sector. In this way the programming sequence is immediately started once DMAEN
bit is set.

Since DMA transfer to the FIFO is faster than the QUADSPI bus, the QUADSPI controls the
transfer flow by setting the FIFO threshold flag (FTF) each time there is (FTHRESH + 1) free
bytes available to be written to the FIFO. DMA transfers are initiated only when FTF flag is
set.

QUADSPI application examples AN4760

82/95 AN4760 Rev 3

6.3.2 QUADSPI indirect write: programming Quad-SPI memory using
interrupts

This example is available for all the STM32 embedding a QUADSPI interface. The
applicable products are listed in Table 2: QUADSPI availability and features across STM32
families.

This section describes the STM32756G_EVAL example which is available on the
STM32Cube_FW_F7 in the directory
Projects\STM32756G_EVAL\Examples\QSPI\QSPI_ReadWrite_IT.

This example shows how to program the Quad-SPI memory with data from the internal
SRAM using CPU and interrupts. The data to be written (aTxBuffer) is a buffer generated on
the SRAM.

Figure 53. Indirect write mode: programming Quad-SPI memory using interrupt

QUADSPI GPIO configuration

The GPIOs and DMA2 are configured in the HAL_QSPI_MspInit() function in the
stm32f7xx_hal_msp.c file. Note that the HAL_QSPI_MspInit() function is called in the
HAL_QSPI_Init() function which include all Quad-SPI required configurations.

The QUADSPI global interrupt is enabled. The GPIOs configuration is done with respect to
the Quad-SPI memory connection in the STM32756G-EVAL board.

Bus mutliplexer

32-bit AHB bus

A
R

T

Arm Cortex-M7

AXIM AHBP

L1-cache G
P

D
M

A
1

M
A

C

Et
he

rn
et

U
SB

O

TG
 H

S

LD
TC

D
M

A
_P

1

D
M

A
_M

E
M

1

D
M

A
_M

E
M

2

D
M

A
_P

2

Flash
memory

SRAM2

AHB2 peripheral
FMC

AHB1 peripheral

D
M

A
2D

AHBS
ITCM

DTCM RAM
ITCM RAM

DTCM

APB1

APB2

64-bit AHB
64-bit bus matrix

32-bit bus matrix-S

64-bit AHB bus

Masters accessing
QUADSPI

Quad-SPI interface

QUADSPI registers
access

QUADSPI
memory-mapped
region access

G
P

D
M

A
2

Memory-mapped region

SRAM1

Slave

Data is transferred
from SRAM by DMA
to be written to
Quad-SPI Flash

Registers

AXI to muti AHB

AN4760 Rev 3 83/95

AN4760 QUADSPI application examples

94

QUADSPI peripheral configuration

The QUADSPI peripheral is configured in the HAL_QSPI_Init() function as described below:

• Configure clock prescaler = 2 => QSPI_CLK = (HCLK / 3) = 72 MHz.
• FIFO threshold FTHRES = 0x03 => The Quad-SPI interrupts the CPU to write into the

FIFO. Each time FTF flag is set (each time there is (FTHRESH + 1), free bytes
available to be written to the FIFO).

• Sample shifting delay is disabled.

• Flash size is set in QUADSPI_DCR register: the memory size is 64 Mbytes = 2[FSIZE+1]
= 2 [19 + 1] so FSIZE = 0x19.

• Chip-select high time (CSHT) is set to one cycle.

• QUADSPI peripheral is enabled by setting EN bit in QUADSPI_CR register.

Quad-SPI memory configuration

As previously mentioned, the write-enable command should be sent at first. This is done by
calling QSPI_WriteEnable() function.

Start programming sequence

To start the programming sequence, the QUADSPI_CCR register is configured in the
HAL_QSPI_Command() function as described below:

• Instruction: QUAD_IN_FAST_PROG_CMD (0x32)

• IMODE: one line

• ADMODE: one line

• ADSIZE: 24 bits

• DMODE: four lines

• FMODE: indirect mode

• The number of bytes to be written is set in the QUADSPI_DLR register in the
HAL_QSPI_Command() function.

The programming sequence is started in HAL_QSPI_Transmit_IT() function, so the
following configurations are done in this function:

• Enable the QUADSPI transfer error TEIE, FIFO threshold FTIE and transfer complete
TCIE Interrupts

Note that the used address is 0x0000 0000 in the QUADSPI_AR register as writing is
performed in the first sector.

Once that the FTF flag is set, an interrupt is generated to the CPU. The CPU jumps from the
main code to the interrupt routine HAL_QSPI_IRQHandler() located in
stm32f7xx_hal_qspi.c and checks the source of the interrupt, then the CPU starts
transferring data to the FIFO. Once finished, the CPU clears the FTF flag, exits the
HAL_QSPI_IRQHandler() and returns to the main code.

QUADSPI application examples AN4760

84/95 AN4760 Rev 3

6.4 Erasing-data example

This section describes how to erase the Quad-SPI Flash memory. As previously mentioned,
the Indirect mode should be used for Quad-SPI Flash memory erasing.

All the provided Quad-SPI examples in the STM32Cube firmware package include an
erasing operation example. For the STM32F7x5/F7x6 products EVAL board, the examples
are available in the following STM32Cube directory:
STM32Cube_FW_F7_VX.X.X\Projects\STM32756G_EVAL\Examples\QSPI.

Quad-SPI memory configuration

Before performing an erasing operation, a write-enable command has to be sent to the
memory, this is done using the QSPI_WriteEnable() function.

Start erasing sequence

To start erasing sequence, the QUADSPI_CCR register is configured in the
HAL_QSPI_Command_IT() function as described below:

• Instruction: SECTOR_ERASE_CMD (0xD8)

• IMODE: one line

• ADMODE: one line

• ADSIZE: 24 bits

• DMODE: no data

• FMODE: indirect write mode

• QUADSPI_AR = 0x0000 0000.

After configuring the QUADSPI_CCR register, and since no data need to be sent, the
erasing sequence is started immediately once the address of the first sector is provided.

AN4760 Rev 3 85/95

AN4760 QUADSPI application examples

94

6.5 Hardware implementation example

This section provides some hardware implementation examples of connecting the Quad-
SPI Flash memory to the STM32 based on the existing ST Discovery and Evaluation
boards. The following table summarizes the different STM32 boards embedding Quad-SPI
Flash memory.

Table 16. Different STM32 boards embedding Quad-SPI Flash memory

Product families Board Quad-SPI Flash model Size (Mbytes)

STM32L475 B-L475E-IOT01A MX25R6435F 8

STM32L476
STM32L476G-DISCO N25Q128A13EF840E 16

STM32L476G-EVAL N25Q256A13EF840E 32

STM32L496 STM32L496G-DISCO MX25R6435FM2IL0 8

STM32F412 STM32F412G-DISCO N25Q128A13EF840F 16

STM32F413 STM32F413H-DISCO - 16

STM32F446 STM32446E-EVAL N25Q256A13EF840E 32

STM32F469
STM32F469I-DISCO N25Q128A13EF840F 16

STM32469I-EVAL MT25QL512ABA8ESF-0SIT 64

STM32F479 STM32479I-EVAL MT25QL512ABA8ESF-0SIT 64

STM32F723 STM32F723e-DISCO MX25L51245G 64

STM32F746
STM32F746G-DISCO N25Q128A13EF840E 16

STM32746G-EVAL MT25QL512ABA8ESF-0SIT 64

STM32F750 STM32F7508-DISCO - 16

STM32F756 STM32756G-EVAL N25Q512A13GSF40E 64

STM32F769

STM32F769I-EVAL MT25QL512ABA8ESF-0SIT 64

STM32F769I-DISCO
MT25QL512ABB1EW9

/MX25L51245G
64

STM32F779 STM32F779I-EVAL N25Q512A13GSF40E 64

STM32H743/STM32H753 STM32H7xxI-EVAL MT25TL 01GHBB8ESF-0SIT 128

QUADSPI application examples AN4760

86/95 AN4760 Rev 3

STM32F746G-DISCO discovery board

The figure below shows an example of a connected MICRON Quad-SPI Flash memory in
Quad I/O mode on the STM32F746G-DISCO discovery board.

Figure 54. Quad-SPI memory connection on the STM32F746G-DISCO discovery board

STM32L476G-EVAL board

The figure below shows an example of how to connect MICRON Quad-SPI Flash memory in
Quad I/O mode on the STM32L476G-EVAL discovery board.

Figure 55. Quad-SPI memory connection on the STM32L476G-EVAL board

AN4760 Rev 3 87/95

AN4760 Performance and power

94

7 Performance and power

This section presents some recommendations on how to improve performance and how to
decrease power consumption for applications using the Quad-SPI interface.

7.1 How to get the best performances

7.1.1 Write performance

Since the writing speed of the Quad-SPI Flash memories is considerably low, there is limited
benefit when optimizing the transmission speed. It is beneficial to use burst (page
programming) writing to reduce the command overhead. In addition, DMA can be used to
offload the CPU.

7.1.2 Read performance

This section describes how to get the optimum reading performances using QUADSPI
peripheral features by following the described recommendations.

Configure QUADSPI at maximum speed

One of the most important parameters that permits to boost the read performances is the
QUADSPI clock that should be as high as possible. As previously mentioned (see
Section 4.3.2: Good PCB design allows maximum QUADSPI speed), the maximum
reachable QUADSPI operating speed depends mainly on the PCB design quality so the
user should optimize the PCB design.

For instance, if the user hardware allows the QUADSPI to operate at 60 MHz in DDR
Quad I/O mode, then for a sequential access case, an image can be read at
60000000/1024/1024= 57.22 Mbyte/s. In this case for a 4 Kbytes image, the total transfer
time is of 4107 cycles: eight cycles for command + three cycles for the address (24 bits in
DDR mode) + 4096 cycles for the 4 Kbytes image.

Another important parameter to be considered by the user when selecting the Quad-SPI
memory device, is the maximal clock frequency supported by the Quad-SPI memory in SDR
and DDR modes.

Use DDR mode (DTR)

Use the DDR mode to double the throughput, for instance in SDR Quad I/O mode one byte
is read every two clock cycles while in DDR mode one byte is read every clock cycle.

Another interesting usage for the DDR mode is that it can be a very good alternative in low-
power applications requiring to operate at a low system clock in order to save power where
it is not possible that the QUADSPI operates at its maximum speed. In that case the user
can use the DDR mode to double reading speed but at the same operating QUADSPI clock.

Note: The user should make sure that the read command that is used does support the DDR
mode.

Performance and power AN4760

88/95 AN4760 Rev 3

Use Quad I/O mode

Using Quad I/O mode permits a boost in reading performances, so the user should use the
Quad I/O mode rather than the Single or Dual I/O mode. It is recommended to use the
Quad I/O mode for all the phases: command, address, alternate-byte and data.

Note that sending the command in four lines is supported by some memory devices such as
Micron or Spansion.

Use Dual-Flash mode

Using Dual-Flash mode requires adding only four additional GPIOs (IO4 ... IO7) and
permits to double the throughput. For example in SDR Quad I/O dual-Flash mode one byte
is read each QSPI_CLK cycle, while in DDR Quad I/O dual-Flash mode two bytes are read
each QSPI_CLK cycle.

Reduce command overhead

Each access to Quad-SPI memory needs a command and an address to be sent which
leads to command overhead. In order to reduce command overhead and boost the read
performance, the user should use the following recommendations:

• Use large burst transfers for Indirect mode

Since each access to Quad-SPI memory needs to send a command and an address, it is
beneficial to perform large burst transfers rather than small repetitive transfers; this action
permits reduction of command overhead.

• Sequential access in Memory-mapped mode

The best read performance is achieved if the stored data is read out sequentially, which
avoids command and address overhead and then leads to reach the maximum
performances at the operating QUADSPI clock speed.

In general it is the case where Quad-SPI memory is used for storage applications such as
graphics or multimedia contents (see examples in Section 6.1: Reading data from Quad-SPI
memory: graphical application.)

• Consider timeout counter

The user should consider that enabling timeout counter in Memory-mapped mode may
increase command overhead. When timeout occurs, the QUADSPI rises chip-select. After
that, to read from the Quad-SPI memory a new read sequence needs to be initiated; it
means that the read command should be issued again, which leads to command overhead
(see Section 3.4.3: Timeout counter).

Timeout counter permits decreasing power consumption (see Section 7.2.1: Use timeout
counter), but if the performance is a concern, the user can increase the timeout period in the
QUADSPI_LPTR register or even disable it.

If the power consumption is also a concern, the user can enable the SIOO feature without
the need to disable the timeout counter.

AN4760 Rev 3 89/95

AN4760 Performance and power

94

• Use SIOO feature (Continuous read mode) for random and non-sequential accesses

For random and non-sequential accesses, the command overhead increases. As described
in Figure 13, a command and an address are sent to the memory every new read sequence.
In this case, the user should enable the SIOO feature in order to reduce the command
overhead (see Section 3.4.1: Send instruction only-once (SIOO)).

Note: Not all the read commands support the Continuous read mode (Enhance performance
mode) so the user should consider this information when selecting the read command.

Execution performance

To improve the execution performance from the Quad-SPI Flash memory, the user should
follow the previously described read performance recommendations.

Executing from the Quad-SPI memory is generally characterized by its random and non-
sequential accesses. As already mentioned, an important recommendation to boost
execution performance is enabling the SIOO feature.

As seen in Figure 50: 6_1-Quad-SPI_rwRAM-DTCM project configuration: code and data in
Quad-SPI memory, placing both the code and the read-only data in the Quad-SPI memory
leads to concurrency on the Quad-SPI interface during execution.

In order to avoid this concurrency, the user can separate the read-only data and the code.
For example, the read-only data can be located in the Quad-SPI memory while the code can
be located in the Flash-TCM. This action permits to avoid the concurrency of the read-only
data and the instruction fetch; therefore, the CPU can fetch the instructions from Flash-TCM
while the data is loaded from the Quad-SPI memory at the same time.

When the application contains huge constants data, the user can separate constants and
code, each one in a dedicated section. If the code section size fit the internal Flash memory
size, the code can be loaded in the internal Flash memory while the constants are loaded in
the Quad-SPI memory.

For the STM32F7x5/F7x6, it is recommended to enable the Cortex®-M7 L1-Cache.

General recommendations

• Use DMA for data transfers in order to offload the CPU.

• Use Flag-status polling mode rather than software flag checking.

• Use Memory-mapped mode to permit any AHB master to access the Quad-SPI
memory without CPU intervention.

Performance and power AN4760

90/95 AN4760 Rev 3

7.2 Decreasing power consumption

One of the most important requirements in wearable and mobile applications is the power
consumption. Some recommendations can be followed in order to decrease the power
consumption.

To decrease the total application’s power-consumption, the user usually puts the STM32 in
low-power mode. To reduce even more the current consumption, the connected Quad-SPI
memory also can be put in low-power mode (also known as deep power-down mode).

For most Quad-SPI Flash memory devices the default mode after the powering-up
sequence is the standby mode. In standby mode, there is no ongoing operation; the nCS is
high but current consumption can be reduced even more. The DPD mode allows reducing
the power consumption.

7.2.1 Use timeout counter

The timeout nCS feature can be used to avoid any extra power-consumption in the external
Flash memory. When the clock is stopped for a long time, the timeout counter can release
the nCS pin to put the external Flash memory in a lower-consumption state after a period of
timeout elapsed without any access (see Section 3.4.3: Timeout counter).

7.2.2 Put the Quad-SPI memory in Deep power-down mode

The Deep power-down mode requires to enter the deep-power instruction. During the Deep
power-down mode, the device is not active and all of the write, program and erase
instructions are ignored. When CS# goes high, it is only in Standby mode and not in Deep
power-down mode. Deep power-down mode is different from standby mode.

Before entering a low-power mode or when the Quad-SPI memory is not used, it can be put
in DPD mode in order to reduce the overall application’s power-consumption. For several
memory brands the command 0xB9 should be sent to the external serial-Flash memory to
enter the deep power-down mode. The following figure shows the DPD sequence:

Figure 56. Deep power-down (DPD) sequence (command B9)

AN4760 Rev 3 91/95

AN4760 Performance and power

94

To exit DPD mode, the RELEASE FROM DEEP POWERDOWN command (0xAB) should
be sent. The figure below shows the RPD sequence:

Figure 57. Release from deep power-down (RDP) sequence (command AB)

Note: Not all the serial Flash memories support the Deep power-down mode. If the selected
external serial memory does not support the Deep power-down mode, the STM32 may
control an external-power switch through a GPIO to remove the power supply of the external
Quad-SPI Flash memory and to cancel its current consumption.

7.2.3 Quad-SPI Flash memories supporting DPD mode

Many Quad-SPI memory brands support the DPD mode, here below an example:

• WINBOND: W25Q64CV

• Spansion: S25FL032P

• MICRON: MT25QL512AB

• Macronix: MX25L12865F

Supported devices AN4760

92/95 AN4760 Rev 3

8 Supported devices

The STM32 Quad-SPI interface has a very flexible frame format that permits the following:

• Send up to five phases: instruction – address – alternate byte – dummy – data

• Skip any phase

• Send each phase in one, two or four lines

• Send address in one, two, three or four bytes

• Send one, two, three or four alternate-byte

• Send up to 31 dummy clock cycles.

In addition, STM32 Quad-SPI interface permits sending any command, so the user can
program the desired command in the QUADSPI_CCR register in the INSTRUCTION[7:0]
field.

The STM32 Quad-SPI interface is fully configurable in terms of frame format and hardware
and it supports most Quad-SPI memory in the market.

There are several suppliers of QUADSPI compatible memories, such as Winbond,
Spansion, Macronix, MICRON (Numonyx), Microchip (SST) and others.

AN4760 Rev 3 93/95

AN4760 Conclusion

94

9 Conclusion

The STM32 devices provide a very flexible and useful Quad-SPI interface, which fits
memory hungry applications at a lower development cost. The QUADSPI avoids the
complexity of design with external parallel Flash memories by reducing the pin count and
offering better performances. This application note demonstrates the STM32 Quad-SPI
interface performances and flexibility, which allows lower development costs and faster time
to market.

Revision history AN4760

94/95 AN4760 Rev 3

10 Revision history

Table 17. Document revision history

Date Revision Changes

01-Apr-2016 1 Initial release.

02-May-2019 2
Document updated to enlarge scope to other product families. All
sections are impacted by the update.

28-Apr-2020 3

Updated:

– Document title: Quad-SPI interface on STM32 microcontrollers
and microprocessors

– Table 1: Applicable products

– Section 1: General information

– Section 2.1: QUADSPI availability and features across STM32
families

– Table 3: Benefits of using STM32 Quad-SPI interface

– Figure 1: System architecture: STM32L4 Series

– Figure 2: System architecture: STM32F4 Series

– Figure 3: System architecture: STM32F7 Series

– Figure 4: System architecture: STM32H7 Series

– Section 2.3.5: System architecture: STM32WB35xx and
STM32WB55xx devices

– Figure 5: System architecture:STM32WB35xx and
STM32WB55xx

– Figure 45: DMA2D reading images from Quad-SPI to build
frame buffer content

– Figure 46: LTDC reading an image directly from Quad-SPI
memory

– Figure 50: 6_1-Quad-SPI_rwRAM-DTCM project configuration:
code and data in Quad-SPI memory

– Figure 51: 6_2-Quad-SPI_rwRAM-DTCM project configuration:
only code in Quad-SPI memory

– Figure 52: Indirect write mode: programming Quad-SPI memory
using DMA

– Figure 53: Indirect write mode: programming Quad-SPI memory
using interrupt

AN4760 Rev 3 95/95

AN4760

95

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

	Table 1. Applicable products
	1 General information
	2 Overview
	2.1 QUADSPI availability and features across STM32 families
	Table 2. QUADSPI availability and features across STM32 families

	2.2 Quad-SPI benefits against classic SPI and parallel interfaces
	2.2.1 Main benefits of STM32 embedded Quad-SPI interface
	Table 3. Benefits of using STM32 Quad-SPI interface

	2.3 QUADSPI in a smart architecture
	2.3.1 System architecture: STM32L4 Series
	Figure 1. System architecture: STM32L4 Series

	2.3.2 System architecture: STM32F4 Series
	Figure 2. System architecture: STM32F4 Series

	2.3.3 System architecture: STM32F7 Series
	Figure 3. System architecture: STM32F7 Series

	2.3.4 System architecture: STM32H7 Series
	Figure 4. System architecture: STM32H7 Series

	2.3.5 System architecture: STM32WB35xx and STM32WB55xx devices
	Figure 5. System architecture:STM32WB35xx and STM32WB55xx

	3 Quad-SPI interface description
	3.1 Flexible frame format
	Figure 6. Reading sequence in quad I/O SDR
	3.1.1 Instruction phase
	Table 4. Instruction phase configurations

	3.1.2 Address phase
	Table 5. Address-phase configurations

	3.1.3 Alternate-byte phase
	Table 6. Alternate-byte phase configurations
	Figure 7. Alternate-byte phase: sending a nibble in dual-SPI mode

	3.1.4 Dummy-cycle phase
	Figure 8. Dummy-cycle: IO2 maintained low and IO3 maintained high by hardware

	3.1.5 Data phase
	Table 7. Data phase configuration versus Quad-SPI functional modes

	3.2 Multiple hardware-configurations
	Table 8. Hardware configurations versus used GPIO number
	3.2.1 Single-SPI mode (classic SPI)
	Figure 9. Hardware configuration: Single-SPI mode

	3.2.2 Dual-SPI mode
	Figure 10. Hardware configuration: dual-SPI mode

	3.2.3 Quad-SPI mode
	Figure 11. Hardware configuration: Quad-SPI mode

	3.2.4 Dual-Flash memory mode
	Figure 12. Read sequence in dual-Flash memory Quad I/O SDR mode
	Table 9. Dual-Flash memory hardware configurations

	3.2.5 DDR and SDR mode

	3.3 Three operating modes
	3.3.1 Indirect mode
	3.3.2 Status-flag polling mode
	3.3.3 Memory-mapped mode
	Figure 13. Executing non-sequential code from Quad-SPI

	3.4 Special features
	3.4.1 Send instruction only-once (SIOO)
	Figure 14. Executing non-sequential code from QUADSPI with SIOO enabled

	3.4.2 Delayed data sampling
	3.4.3 Timeout counter
	3.4.4 Additional status bits
	Table 10. Additional status bits

	3.4.5 Busy bit and abort functionality
	Table 11. BUSY bit reset in different Quad-SPI modes

	3.4.6 4-byte address mode
	Table 12. Address mode versus maximum addressable memory space

	3.4.7 QUADSPI and delay block in STM32H7 Series
	Figure 15. QUADSPI and delay block

	3.5 Interrupts and DMA usage
	3.5.1 Interrupts usage
	Table 13. QUADSPI interrupts summary

	3.5.2 DMA usage
	Table 14. DMA requests mapping and transfer directions versus STM32 series
	Figure 16. QUADSPI and master DMA

	3.6 Low-power modes

	4 QUADSPI configuration
	4.1 GPIOs configuration
	4.1.1 GPIOs configuration using STM32CubeMX tool
	Figure 17. STM32CubeMX: QUADSPI GPIOs configuration
	Figure 18. STM32CubeMX: PF8 pin configuration to QUADSPI_BK1_IO0 alternate function
	Figure 19. STM32CubeMX: Dual-Flash memory QUADSPI with chip-select 1 configuration
	Figure 20. STM32CubeMX: enabling QUADSPI global interrupt

	4.2 QUADSPI peripheral configuration and clock
	4.2.1 QUADSPI peripheral configuration (QUADSPI_CR register)
	Figure 21. QUADSPI clock configuration on QUADSPI_CR register
	Figure 22. STM32CubeMX: quadspi_ker_ck source clock configuration in STM32H7 Series
	Figure 23. STM32CubeMX: quadspi_ker_ck source clock selection in STM32H7 Series

	4.2.2 Quad-SPI Flash memory parameters configuration (QUADSPI_DCR register)
	Figure 24. STM32CubeMX: QUADSPI peripheral configuration

	4.2.3 QUADSPI and MPU configuration
	4.2.4 Quad-SPI memory device configuration
	Figure 25. Write enable sequence (command 0x06)

	4.2.5 Starting a communication (QUADSPI_CCR register)

	4.3 Hardware considerations
	4.3.1 Pull-up resistance
	Figure 26. Connecting chip-select to a pull-up resistance

	4.3.2 Good PCB design allows maximum QUADSPI speed
	4.3.3 Chip-select high time (CSHT)
	4.3.4 CKMODE
	Figure 27. Chip select high time: CSHT = two clock cycles

	4.3.5 Some considerations when using QUADSPI in classical SPI mode
	Figure 28. QUADSPI in classical SPI mode frame example

	5 Programming Quad-SPI Flash memory
	5.1 Programming code or data for an end application
	Figure 29. Programming Quad-SPI memory through debug interface
	5.1.1 Programming Quad-SPI Flash memory using the STM32 ST-LINK utility
	Figure 30. STM32 ST-LINK utility: adding Quad-SPI Flash memory loader
	Figure 31. STM32 ST-LINK utility: selecting Quad-SPI Flash memory loader
	Figure 32. STM32 ST-LINK utility: error message
	Figure 33. STM32 ST-LINK utility: programming Quad-SPI Flash memory
	Figure 34. STM32 ST-LINK utility: selecting HEX file for programming
	Figure 35. STM32 ST-LINK utility: erasing sectors

	5.1.2 Programming Quad-SPI Flash memory using IDE
	Figure 36. Adding Quad-SPI Flash memory loader to Keil MDK-ARM project
	Figure 37. Adding Quad-SPI Flash memory loader to Keil MDK-ARM project
	Figure 38. Selecting Quad-SPI Flash memory programming algorithm
	Figure 39. Quad-SPI Flash memory loader programming algorithm configuration

	5.2 Storing and erasing data on the fly during running application
	5.2.1 Storing data
	Figure 40. Quad I/O page program sequence (command 0x38)
	Figure 41. Read status register sequence (command 0x05)

	5.2.2 Erasing data
	Figure 42. Sector erase sequence
	Figure 43. Example: full chip-erase sequence

	6 QUADSPI application examples
	6.1 Reading data from Quad-SPI memory: graphical application
	6.1.1 Frame buffer content generation from Quad-SPI memory
	Figure 44. QUADSPI usage in a graphical application
	Figure 45. DMA2D reading images from Quad-SPI to build frame buffer content

	6.1.2 Displaying images directly from the Quad-SPI memory
	Figure 46. LTDC reading an image directly from Quad-SPI memory

	6.2 Executing from external Quad-SPI memory: extend internal memory size
	Figure 47. Project configurations: executing code from Quad-SPI Flash memory
	Figure 48. Changing QUADSPI configuration in the project settings
	6.2.1 Configuring Quad-SPI in Memory-mapped mode during system initialization
	Figure 49. Quad-SPI Flash memory connection in STM32756-EVAL board

	6.2.2 Placing application code in external Quad-SPI memory
	Figure 50. 6_1-Quad-SPI_rwRAM-DTCM project configuration: code and data in Quad-SPI memory
	Figure 51. 6_2-Quad-SPI_rwRAM-DTCM project configuration: only code in Quad-SPI memory
	Table 15. Execution performances versus configuration

	6.3 Storing (programming) data on the fly during a running application
	6.3.1 QUADSPI indirect write: programming Quad-SPI memory using DMA
	Figure 52. Indirect write mode: programming Quad-SPI memory using DMA

	6.3.2 QUADSPI indirect write: programming Quad-SPI memory using interrupts
	Figure 53. Indirect write mode: programming Quad-SPI memory using interrupt

	6.4 Erasing-data example
	6.5 Hardware implementation example
	Table 16. Different STM32 boards embedding Quad-SPI Flash memory
	Figure 54. Quad-SPI memory connection on the STM32F746G-DISCO discovery board
	Figure 55. Quad-SPI memory connection on the STM32L476G-EVAL board

	7 Performance and power
	7.1 How to get the best performances
	7.1.1 Write performance
	7.1.2 Read performance

	7.2 Decreasing power consumption
	7.2.1 Use timeout counter
	7.2.2 Put the Quad-SPI memory in Deep power-down mode
	Figure 56. Deep power-down (DPD) sequence (command B9)
	Figure 57. Release from deep power-down (RDP) sequence (command AB)

	7.2.3 Quad-SPI Flash memories supporting DPD mode

	8 Supported devices
	9 Conclusion
	10 Revision history
	Table 17. Document revision history

