
STM32H7 Basic Timers
VGRS 2023
Pa3cio Bulić



Timers

• A timer is a circuit that enables the system to have the “knowledge of time” - increments (or decrements) on 
the basis of a programmable clock source. A timer is essential for precise timing and control.

• A timer can generate interrupts

• The hardware of TIMER is composed by three basic memory-mapped registers:
• FREERUNNING COUNTER: increments by one for each clock cycle
• PRESCALER: The prescaler accumulates a prescribed number of bus clocks before issuing a clock tick to the timer. 
• PERIOD: It represents the time it takes for the timer’s counter to reach its maximum value and reset back to zero.

Prescaler Freerunning Counter

Timer Period

=

f BUS CLK

f BUS CLK
N

Event



Basic timers in STM32H750 (TIM6, TIM7)

• STM32H7 contains two basic counter: TIM6 and TIM7.



Basic timers in STM32H750 (TIM6, TIM7)

• TIM6 and TIM7 are connected to APB1 bus.



Timer auto-reload register



Timer prescaler register



Timer control register 1



Timer DMA/Interrupt enable register



Timer status register



Prescaler operation



Prescaler operation



Timer operation



Timer operation – ARR preloading (buffering)
• The auto-reload register (ARR) holds the value at which the counter is automatically reloaded, creating 

a periodic timer behavior. When the counter reaches the value stored in the auto-reload register, it 
resets to zero, and the process repeats.

• The ARR preloading feature (buffering) allows you to load a new value into the auto-reload register 
without affecting the ongoing count. Instead of immediately taking the new value, it is only applied 
when an update event occurs.

• Timer ARR register preloading (buffering) provides several advantages:
• The new value is loaded atomically, preventing glitches or inconsistencies in the timer operation.
• Preloading allows synchronization of updates with specific timer events, ensuring precise control 

over the timer's behavior.
• By updating the registers at a specific moment, preloading can help reduce timing jitter in 

applications where precise timing is crucial.



Timer operation – ARR not preloaded



Timer operation – ARR preloaded



Timer registers abstraction



Timer initalization structure



Timer handle structure



Timer initialization and start

Start timer without interrupts on update events: Start timer with interrupts on update events:



Timer initialization:



Timer initialization:
Implement your own Msp_Init function which:
• enables timer clock
• sets NVIC (priority+enable)



Timer initialization:
Implement your own Msp_Init function which:
• enables timer clock
• sets NVIC (priority+enable)



Timer interrupt processing in HAL:
• STM32 HAL library follows a callback-oriented programming model and uses callback functions: 
• This approach decouples the handling of hardware events from the core library, allowing users to define their 

own behaviors in response to interrupts. 
• It provides a flexible and modular approach to handle interrupts, making the HAL library adaptable to different 

application requirements. 
• Users have the freedom to define specific actions in response to interrupts, ensuring that the HAL remains 

versatile and customizable across diverse embedded applications.

This mechanism is used by almost all 
IRQ handler routines inside the HAL.



Timer interrupt processing in HAL:


