Predmet vsebuje različne napredne teme s področja zaznavanja gibanja z metodami računalniškega vida. Konkretna vsebina se bo letno prilagajala trendom na tem hitro razvijajočem se področju. Trenutne aktualne teme obsegajo: (i) ocenjevanje optičnega toka, (ii) sledenje s predlogo, (iii) sledenje z diskriminativnimi modeli, (iv) Bayesovi verjetnostni modeli za sledenje, (v) globoke metode za sledenje, (vi) dolgoročno sledenje. Predmet je sestavljen iz predavanj, na katerih bomo pokrili bistveno teorijo in projektov s katerimi bodo študentje to teorijo implementirali. Predmet se izvaja v angleškem jeziku.

Obvezno sprotno delo obsega 5 dvotedenskih nalog (opravite doma s konzultacijami pri asistentu in profesorju), ki se začnejo s pričetkom semestra. Naloge so obsežne in pokrivajo sprotno snov s predavanj. Več informacij o obveznostih in ocenjevanju najdete na spletni učilnici.

Predmet je ZELO matematičen in zahteva od študentov sposobnost razumevanja matematičnih izpeljav ter prenosa matematičnih rešitev v programsko kodo. Predmet je zato po študentskih ocenah med najtežjimi na drugi stopnji in je namenjen zgolj študentom, ki imajo dobro matematično in programersko podlago. Obremenitev je ocenjena na 10-20 ur na nalogo. Predmet izberite samo v primeru, da ste pripravljeni vložiti veliko napora in samostojnega dela.



The course introduces techniques and procedures for analysis of biomedical signals and images like: cardiology signals (electrocardiogram - ECG), neurophysiology signals (electromyogram - EMG, electroencephalogram - EEG), medical images (computed tomography – CT images) with the emphasis on problems of biomedical researches. We will recognize how we can automatically, non-invasive and punctually, within 24-hour electrocardiogram signals, detect heart beats, classify them, and detect transient ischaemic disease, which is one of the most terrible heart diseases; and if we do not discover it punctually, it may lead to heart infarct. We will see how we can, using some non-linear signal processing techniques, analyze electromyograms recorded from the abdomen of a pregnant women, early during pregnancy (23 rd week), estimate, or try to predict, danger of pre-term birth. We will recognize techniques of analyzing electroencephalographic signals, which are recorded from the head of a person, with the aim of human-computer interaction, without using classic input devices. We will also recognize techniques of analysis of 3-dimensional tomographic images with the aim of extraction and visualization of anatomic structures of human body organs. The topics cover: representation of international standardized databases of signal samples (MIT/BIH DB, LTST DB, TPEHG DB, EEGMMI DS, BCI DB, CTIMG DB), techniques of feature extraction from signals and images (band-pass filters, morphological algorithms, principal components, Karhunen-Loeve transform, sample entropy, contour extraction), noise extraction, techniques of visualization of diagnostic and morphology feature-vector time series, and anatomic structures, analysis of feature-vector time series, spectral analysis, modelling, event detection, clustering, classifications, as well as metrics, techniques and protocols to evaluate performance and robustness of biomedical computer systems. Coursework consists of three seminars, quiz during lectures, and final exam.

The course introduces techniques and procedures for analysis of biomedical signals and images like: cardiology signals (electrocardiogram - ECG), neurophysiology signals (electromyogram - EMG, electroencephalogram - EEG), medical images (computed tomography – CT images) with the emphasis on problems of biomedical researches. We will recognize how we can automatically, non-invasive and punctually, within 24-hour electrocardiogram signals, detect heart beats, classify them, and detect transient ischaemic disease, which is one of the most terrible heart diseases; and if we do not discover it punctually, it may lead to heart infarct. We will see how we can, using some non-linear signal processing techniques, analyze electromyograms recorded from the abdomen of a pregnant women, early during pregnancy (23 rd week), estimate, or try to predict, danger of pre-term birth. We will recognize techniques of analyzing electroencephalographic signals, which are recorded from the head of a person, with the aim of human-computer interaction, without using classic input devices. We will also recognize techniques of analysis of 3-dimensional tomographic images with the aim of extraction and visualization of anatomic structures of human body organs. The topics cover: representation of international standardized databases of signal samples (MIT/BIH DB, LTST DB, TPEHG DB, EEGMMI DS, BCI DB, CTIMG DB), techniques of feature extraction from signals and images (band-pass filters, morphological algorithms, principal components, Karhunen-Loeve transform, sample entropy, contour extraction), noise extraction, techniques of visualization of diagnostic and morphology feature-vector time series, and anatomic structures, analysis of feature-vector time series, spectral analysis, modelling, event detection, clustering, classifications, as well as metrics, techniques and protocols to evaluate performance and robustness of biomedical computer systems. Coursework consists of three seminars, quiz during lectures, and final exam.

Vsebina predmeta temelji na izboru sodobnih tehnik obdelave naravnega jezika podkrepljenih s praktično rabo. V predavanjih predstavimo glavne pristope in pojasnimo delovanje posameznih metod in njihovo teoretično ozadje. V okviru laboratorijskih vaj znanje povežemo s praktično rabo in ga utrdimo z uporabo odprtokodnih sistemov za obdelavo naravnega jezika. Študenti rešujejo naloge, ki temeljijo na realnih raziskovalnih in praktičnih problemih, pretežno v slovenskem in angleškem jeziku.

  1. Uvod: motivacija, razumevanje jezika, Turingov test, tradicionalni in statistični pristop, pregled področja, težav in uspehov
  2. Predprocesiranje in normalizacija teksta: uporaba regularnih izrazov (avtomatov) za iskanje in zamenjavo nizov, gramatike za prepoznavanje sintakse, podobnost nizov, Levenhsteinova razdalja
  3. Klasični jezikovni modeli: n-grami, lematizacija, leksikoni besednih oblik
  4. Vektorske predstavitve besedil: tf-idf, goste predstavitve word2vec
  5. Globoka omrežja in besedila: rekurzivne in konvolucijske nevronske mreže za besedila
  6. Nevronski jezikovni modeli: ELMo, BERT,
  7. Medjezikovne vektorske vložitve
  8. Oblikoslovno označevanje in skladenjsko razčlenjevanje za angleščino in slovenščino,
  9. Leksikalna semantika in razdvoumljanje
  10. Jezikovni viri: korpusi, slovarji, tezavri, omrežja in semantične baze, WordNet, pregled orodij in repozitorijev, luščenje terminologije.
  11. Prepoznavanje imenskih entitet (NER) in označevanje udeleženskih vlog (SRL)
  12. Tekstovno rudarjenje: prilagojene klasifikacijske metode, metodologija in evalvacija
  13. Analiza čustev
  14. Odgovori na vprašanja
  15. Povzemanje: predstavitve besedil, matrična faktorizacija, abstraktivne, ekstrakcijske metode in povpraševane metode.
  16. Strojno prevajanje: jezikovni model, prevajalni model, poravnava jezikov, parametri modelov, izzivi v prevajanju.

Obveznosti pri predmetu obsegajo pet spletnih kvizov in tri seminarske naloge z roki z oddajo v aprilu, maju in juniju.

Prerequisite knowledge:
- Programming skills (at least at the intermediate level)
- Introductory course to artificial intelligence
- Introductory course to computer vision

Short course description:
The course relies mostly on computer vision, as most biometrics technologies are based on it.
Students interested in cutting edge technology, much of which is still in a research stage, are the
intended target for the course. The main content (will evolve due to developments in the field):
- Biometrics basics
- Biometrical modalities
- Structure of a typical biometric system
- Recognition/verification/identification
- Metrics
- Conditions for correct comparisons of the systems (databases, frameworks)
- Performance and usefulness of the systems
- Computer vision as the foundation of the biometric systems
- Fingerprint
- Iris
- Face
- Multi-biometric systems / multi-modality / fusions
- Key problems of modalities/systems (research challenges)

The lectures introduce the approaches and explain their operation. At tutorial the knowledge is
applied to practical problems in mostly Python and open source tools.

Student work tentatively includes three assignments and a final exam. The deadlines for the three
assignments are approximately around beginning to mid of November, beginning to mid of
December and beginning to mid of January.