From graph theory to network science
Section outline
-
From classical graph theory to social network analysis and modern network science. Networks in different fields of science.
Lecture slides:
- (1) Networks introduction and motivation
- (1) From graph theory to network science
- (6) Networks through fields of science
Lab notebooks:
Book chapters:
- → Ch. 1: Introduction in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 1-5: Introduction etc. in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
- Ch. 1: Overview in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
Course readings:
- Barabási, A.-L., The network takeover, Nat. Phys. 8(1), 14-16 (2012).
- → Newman, M.E.J., The physics of networks, Phys. Today 61(11), 33-38 (2008).
- Barabási, A.-L. & Bonabeau, E., Scale-free networks, Sci. Am. 288(5), 50-59 (2003).
- → Newman, M.E.J., Communities, modules and large-scale structure in networks, Nat. Phys. 8(1), 25-31 (2012).
- Vespignani, A., Modelling dynamical processes in complex socio-technical systems, Nat. Phys. 8(1), 32-39 (2012).
- Motter, A.E. & Yang, Y., The unfolding and control of network cascades, Phys. Today 70(1), 33-39 (2017).
- Hegeman, T. & Iosup, A., Survey of graph analysis applications, e-print arXiv:180700382v1, pp. 23 (2018).
- Cimini, G., Squartini, T. et al., The statistical physics of real-world networks, Nat. Rev. Phys. 1(1), 58-71 (2019).
- → Cramer, C., Porter, M.A. et al., Network Literacy: Essential Concepts and Core Ideas (Creative Commons Licence, 2015).
- Hidalgo, C.A., Disconnected, fragmented, or united? A trans-disciplinary review of network science, Appl. Netw. Sci. 1, 6 (2016).
- Molontay, R. & Nagy, M., Two decades of network science, In: Proceedings of ASONAM '19 (Vancouver, Canada, 2019), pp. 578–583.
- Ch. 1: Uvod in Šubelj, L., Odkrivanje skupin vozlišč v velikih realnih omrežjih, PhD thesis (University of Ljubljana, 2013).