INA: (Introduction to) Network Analysis
Osnutek odseka
-
Introduction to Network Analysis (INA)
-
From classical graph theory to social network analysis and modern network science. Networks in different fields of science.
Lecture slides:
- (1) Networks introduction and motivation
- (1) From graph theory to network science
- (6) Networks through fields of science
Lab notebooks:
- (ii) Recitation on NetworkX, Pajek etc.
Book chapters:
- → Ch. 1: Introduction in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 1-5: Introduction etc. in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
- Ch. 1: Overview in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
Course readings:
- Barabási, A.-L., The network takeover, Nat. Phys. 8(1), 14-16 (2012).
- → Newman, M.E.J., The physics of networks, Phys. Today 61(11), 33-38 (2008).
- Barabási, A.-L. & Bonabeau, E., Scale-free networks, Sci. Am. 288(5), 50-59 (2003).
- → Newman, M.E.J., Communities, modules and large-scale structure in networks, Nat. Phys. 8(1), 25-31 (2012).
- Vespignani, A., Modelling dynamical processes in complex socio-technical systems, Nat. Phys. 8(1), 32-39 (2012).
- Motter, A.E. & Yang, Y., The unfolding and control of network cascades, Phys. Today 70(1), 33-39 (2017).
- Hegeman, T. & Iosup, A., Survey of graph analysis applications, e-print arXiv:180700382v1, pp. 23 (2018).
- Cimini, G., Squartini, T. et al., The statistical physics of real-world networks, Nat. Rev. Phys. 1(1), 58-71 (2019).
- → Cramer, C., Porter, M.A. et al., Network Literacy: Essential Concepts and Core Ideas (Creative Commons Licence, 2015).
- Hidalgo, C.A., Disconnected, fragmented, or united? A trans-disciplinary review of network science, Appl. Netw. Sci. 1, 6 (2016).
- Molontay, R. & Nagy, M., Two decades of network science, In: Proceedings of ASONAM '19 (Vancouver, Canada, 2019), pp. 578–583.
- Ch. 1: Uvod in Šubelj, L., Odkrivanje skupin vozlišč v velikih realnih omrežjih, PhD thesis (University of Ljubljana, 2013).
-
Graphology and networkology. Network representations, formats, and data. Random graph models and real networks models.
Lecture slides:
- (1-2) Graphology and networkology
- (2) Network representations and data
- (2) Erdős-Rényi graph model
- (3) Configuration graph model
Lab notebooks:
- (iii) Network representation and statistics
- (iv) Network algorithms and random graphs
Book chapters:
- → Ch. 2: Graph theory & Ch. 4.8: Generating networks in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 6: Mathematics of networks & Ch. 12-13: Random graphs etc. in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
- Ch. 2: Graphs in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
Course readings:
- Erdős, P. & Rényi, A., On random graphs I, Publ. Math. Debrecen 6, 290-297 (1959).
- Watts, D.J. & Strogatz, S.H., Collective dynamics of 'small-world' networks, Nature 393(6684), 440-442 (1998).
- Barabási, A.-L. & Albert, R., Emergence of scaling in random networks, Science 286(5439), 509-512 (1999).
- Broder, A., Kumar, R. et al., Graph structure in the Web, Comput. Netw. 33(1-6), 309-320 (2000).
- Newman, M.E.J., Strogatz, S.H. & Watts, D.J., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E 64(2), 026118 (2001).
- Milo, R., Kashtan, N. et al., On the uniform generation of random graphs with prescribed degree sequences, e-print arXiv:0312028v2, pp. 4 (2004).
- Carstens, C.J. & Horadam, K.J., Switching edges to randomize networks: What goes wrong and how to fix it, J. Complex Netw. 5(3), 337-351 (2017).
- Fosdick, B., Larremore, D. et al., Configuring random graph models with fixed degree sequences, SIAM Rev. 60(2), 315-355 (2018).
- → Newman, M.E.J., Watts, D.J. & Strogatz, S.H., Random graph models of social networks, P. Natl. Acad. Sci. USA 99, 2566-2572 (2002).
- → Newman, M.E.J. & Park, J., Why social networks are different from other types of networks, Phys. Rev. E 68(3), 036122 (2003).
- → Backstrom, L., Boldi, P. et al., Four degrees of separation, In: Proceedings of WebSci '12 (Evanston, IL, USA, 2012), pp. 45-54.
- McAuley, J.J. & Leskovec, J., Learning to discover social circles in ego networks, In: Proceedings of NIPS '12 (Lake Tahoe, NV, USA, 2012), pp. 548-556.
- Dorogovtsev, S.N. & Mendes, J.F.F., Evolution of networks, Adv. Phys. 51(4), 1079-1187 (2002).
-
Degrees of separation, small-world networks and model. Power-law degree distributions, scale-free networks and models.
Lecture handouts:
- (3) Small-world networks and model
- (3-4) Scale-free distributions and networks
- (4) Preferential attachment models
Lab notebooks:
- (v) Small-world and scale-free models
- (vii) Errors and attacks on the Internet
Book chapters:
- → Ch. 3.8-9: Small worlds etc. & Ch. 4-5: Scale-free property etc. in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 8.4: Power laws etc. & Ch. 14-15: Models of network formation etc. in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
- Ch. 18: Power laws etc. and Ch. 20: Small-world phenomenon in Easley, D. & Kleinberg, J., Networks, Crowds, and Markets (Cambridge University Press, 2010).
Course readings:
- Milgram, S., The small world problem , Psychol. Today 1(1), 60-67 (1967).
- Granovetter, M.S., The strength of weak ties, Am. J. Sociol. 78(6), 1360-1380 (1973).
- → Watts, D.J. & Strogatz, S.H., Collective dynamics of 'small-world' networks, Nature 393(6684), 440-442 (1998).
- Dodds, P.S., Muhamad, R. & Watts, D.J., An experimental study of search in global social networks, Science 301(5634), 827-829 (2003).
- Liben-Nowell, D., Novak, J. et al., Geographic routing in social networks, P. Natl. Acad. Sci. USA 102(33), 11623-11628 (2005).
- Backstrom, L., Boldi, P. et al., Four degrees of separation, In: Proceedings of WebSci '12 (Evanston, IL, USA, 2012), pp. 45-54.
- Ugander, J., Karrer, B. et al., The anatomy of the Facebook social graph, e-print arXiv:1111.4503v1, pp. 17 (2011).
- → Zamora-López, G. & Brasselet, R., Sizing the length of complex networks, e-print arXiv:1810.12825v1, pp. 25 (2018).
- → Kleinberg, J.M., Navigation in a small world, Nature 406(6798), 845 (2000).
- de Solla Price, D.J., Networks of scientific papers, Science 149, 510-515 (1965).
- → Barabási, A.-L. & Albert, R., Emergence of scaling in random networks, Science 286(5439), 509-512 (1999).
- Faloutsos, M., Faloutsos, P. & Faloutsos, C., On power-law relationships of the Internet topology, Comput. Commun. Rev. 29(4), 251-262 (1999).
- Clauset, A., Shalizi, C.R. & Newman, M.E.J., Power-law distributions in empirical data, SIAM Rev. 51, 661-703 (2009).
- → Albert, R., Jeong, H. & Barabási, A.-L., Error and attack tolerance of complex networks, Nature 406(6794), 378-382 (2000).
- Albert, R., Jeong, H. & Barabási, A.-L., Diameter of the World Wide Web, Nature 401, 130-131 (1999).
- Dorogovtsev, S.N. & Mendes, J.F.F., Evolution of networks, Adv. Phys. 51(4), 1079-1187 (2002).
- De Domenico, M. & Arenas, A., Modeling structure and resilience of the dark network, Phys. Rev. E 95(2), 022313 (2017).
- Golosovsky, M., Preferential attachment mechanism of complex network growth, e-print arXiv:1802.09786v1, pp. 12 (2018).
- Voitalov, I., van der Hoorn, P. et al., Scale-free networks well done, e-print arXiv:1811.02071v1, pp. 31 (2018).
- Broido, A.D. & Clauset, A., Scale-free networks are rare, Nat. Commun. 10(1), 1017 (2019).
- Barabási, A.-L., Love is all you need, reply to e-print arXiv:1801.03400v1, pp. 6 (2018).
- → Holme, P., Rare and everywhere, Nat. Commun. 10(1), 1016 (2019).
- → Mannion, S. & MacCarron, P., Fitting degree distributions of complex networks, e-print arXiv:2212.06649v1, pp. 21 (2022).
-
Assortative and disassortative mixing. Degree mixing matrix, function and coefficient. Structural cutoff and disassortativity.
Lecture handouts:
- (9) Node mixing in networks
Lab notebooks:
- (xii) Node mixing by (not) degree
Book chapters:
- → Ch. 7: Degree correlations in Barabási, A.-L., Network Science (Cambridge University Press, 2016).
- Ch. 7.13: Homophily & Ch. 8.7: Assortative mixing in Newman, M.E.J., Networks: An Introduction (Oxford University Press, 2010).
Course readings:
- Newman, M.E.J., Mixing patterns in networks, Phys. Rev. E 67(2), 026126 (2003).
- Newman, M.E.J., Assortative mixing in networks, Phys. Rev. Lett. 89(20), 208701 (2002).
- → Newman, M.E.J. & Park, J., Why social networks are different from other types of networks, Phys. Rev. E 68(3), 036122 (2003).
- Pastor-Satorras, R., Vázquez, A. & Vespignani, A., Dynamical and correlation properties of the Internet, Phys. Rev. Lett. 87(25), 258701 (2001).
- Vázquez, A., Pastor-Satorras, R. & Vespignani, A., Large-scale topological and dynamical properties of the Internet, Phys. Rev. E 65(6), 066130 (2002).
- Xulvi-Brunet, R. & Sokolov, I.M., Changing correlations in networks: Assortativity and dissortativity, Acta Phys. Pol. B 36, 1431-1455 (2005).
- → Park, J. & Barabási, A.-L., Distribution of node characteristics in complex networks, P. Natl. Acad. Sci. USA 104(46), 17916-17920 (2007).
- → Foster, J.G., Foster, D.V. et al., Edge direction and the structure of networks, P. Natl. Acad. Sci. USA 107(24), 10815-10820 (2010).
- Peel, L., Delvenne, J.-C., & Lambiotte, R., Multiscale mixing patterns in networks, P. Natl. Acad. Sci. USA 115(16), 4057-4062 (2018).
- Estrada, E., Combinatorial study of degree assortativity in networks, Phys. Rev. E 84(4), 047101 (2011).