Applications of network analysis
Section outline
-
Comparing bibliographic databases, clustering and modeling scientific publications, and analyzing scientific coauthorships. Mining software dependency networks. Detecting automobile insurance fraudsters.
Lectures materials:
- Comparing databases (see above)
- Clustering scientific publications (slides)
- Modeling scientific publications (slides)
- Analyzing scientific coauthorships (skipped)
- Software dependency networks (slides)
- Insurance fraud detection (slides)
Further readings:
- Šubelj, L., Fiala, D. & Bajec, M., Network-based statistical comparison of bibliographic databases, Sci. Rep. 4, 6496 (2014).
- Šubelj, L., Bajec, M. et al., Quantifying the consistency of scientific databases, PLoS ONE 10(5), e0127390 (2015).
- Newman, M.E.J., The structure of scientific collaboration networks, P. Natl. Acad. Sci. USA 98(2), 404–409 (2001).
- Perc, M., Growth and structure of Slovenia’s scientific collaboration network, J. Infometrics 4(4), 475–482 (2010).
- Waltman, L. & Van Eck, N.J., Constructing a publication-level classification system of science, J. Am. Soc. Inf. Sci. Tec. 63(12), 2378-2392 (2012).
- Van Eck, N.J. & Waltman, L., CitNetExplorer: A new software tool for analyzing and visualizing citation networks, J. Infometr. 8(4), 802–823 (2014).
- Šubelj, L., Van Eck, N.J. & Waltman, L., Comparison of methods for clustering citation networks, In: Proceedings of NetSci-X ’16 (Wroclaw, Poland, 2016), p. 1.
- Šubelj, L., Van Eck, N.J. & Waltman, L., Clustering scientific publications based on citation relations, PLoS ONE 11(4), e0154404 (2016).
- Simkin, M.V. & Roychowdhury, V.P., Read before you cite!, Compl. Syst. 14(3), 269–274 (2003).
- Menczer, F., Evolution of document networks, P. Natl. Acad. Sci. USA 101(1), 5261–5265 (2004).
- Hajra, K.B. & Sen, P., Modeling aging characteristics in citation networks, Physica A 368(2), 575–582 (2005).
- Simkin, M.V. & Roychowdhury, V.P., Copied citations create renowned papers?, Annals Improb. Res. 11(1), 24–27 (2005).
- Wu, Z.-X. & Holme, P., Modeling scientific-citation patterns and other triangle-rich acyclic networks, Phys. Rev. E 80(3), 037101 (2009).
- Ren, F.-X., Cheng, X.-Q. & Shen, H.-W., Modeling the clustering in citation networks, Physica A 391(12), 3533–3539 (2012).
- Šubelj, L. & Bajec, M., Model of complex networks based on citation dynamics, In: Proceedings of LSNA ’13 (Rio de Janeiro, Brazil, 2013), pp. 527–530.
- Šubelj, L., Žitnik, S. & Bajec, M., Who reads and who cites?, In: Proceedings of NetSci ’14 (Berkeley, CA, USA, 2014), p. 1.
- Xie, Z., Ouyang, Z. et al., A geometric graph model for citation networks of exponentially growing scientific papers, Physica A 456, 167-175 (2016).
- Clough, J.R. & Evans, T.S., What is the dimension of citation space?, Physica A 448, 235–247 (2016).
- Myers, C.R., Software systems as complex networks, Phys. Rev. E 68(2), 046116 (2003).
- Valverde, S. & Solé, R.V., Logarithmic growth dynamics in software networks, Europhys. Lett. 72(5), 858-864 (2005).
- Valverde, S. & Solé, R.V., Network motifs in computational graphs, Phys. Rev. E 72(2), 026107 (2005).
- Kohring, G.A., Complex dependencies in large software systems, Advs. Complex Syst. 12(6), 565–581 (2009).
- Šubelj, L. & Bajec, M., Community structure of complex software systems, Physica A 390(16), 2968–2975 (2011).
- Fortuna, M.A., Bonachela, J.A. & Levin, S.A., Evolution of a modular software network, P. Natl. Acad. Sci. USA 108(50), 19985–19989 (2011).
- Šubelj, L., Žitnik, S. et al., Node mixing and group structure of complex software networks, Advs. Complex Syst. 17(7-8), 1450022 (2014).
- Šubelj, L. & Bajec, M., Software systems through complex networks science, In: Proceedings of SoftMine ’12 (Beijing, China, 2012), pp. 9–16.
- Derrig, R.A., Insurance fraud, J. Risk Insur. 69(3), 271–287 (2002).
- Viaene, S., Derrig, R.A. et al., A comparison of state-of-the-art classification techniques for insurance claim fraud detection, J. Risk Insur. 69(3), 373–421 (2002).
- Šubelj, L., Furlan, Š. & Bajec, M., An expert system for detecting automobile insurance fraud using social network analysis, Expert Syst. Appl. 38(1), 1039–1052 (2011).
- Furlan, Š. & Bajec, M., Holistic approach to fraud management in health insurance, J. Inf. Organ. Sci. 32(2), 99-114 (2008).
- Comparing databases (see above)