
Assignment 4
Implement the following three algorithms described below. Each algorithm is
worth up to five points. Solutions must be submitted by 19.5.2024. Use the
link on e-ucilnica to turn in your work. The report must be in .pdf format with
provided .py file for code submission.

Continuous optimization
This assignment is an introduction to continuous optimization using functions
available in pymoo python package. This is also a warm-up for the Assignment 5.
By completing this you should have a groundwork for starting next assignment.

The assignment consists of finding values at specific points in 2D space of
three functions, namely Rastrigin, Sphere, and Ackley. You need to imple-
ment three basic search algorithms, namely grid search, random search and
first descent local optimization.

Each algorithm must be implemented as a function in Python. You should
submit a pdf report with required information and your source code as a separte
file for the algorithms.

This section describes the algorithms you are implementing. The second
sections has instruction on how to run the selected functions in R, and the last
sections includes example on how to run the same package inside Python.

Grid search

Implement a grid search algorithm to evaluate the three selected 2D functions
on a discrete grid of points with a grid size of 1, within the specified bounds for
each function. The point (0, 0) should always be included in the search. See
the appendix or the provided python code to see how to find the default bounds
for each function.

For each of the selected functions, the report should include:

a) Number of points tested

b) Coordinates and objective values for the minimum and maximum found

Random search

Implement a random search function that searches the 2D space uniformly ran-
domly within the specified bounds for each function.

For each of the selected functions, the report should include:

a) Mean objective value found over 1000 calls

b) Coordinates and objective value for the minimum found

Local search

Implement a local search using first descent, which means that you move to
the next solution as soon as the first neighbor you find is better than the current
solution instead of checking all the neighbors and moving to the best one. Let
the algorithm run for a maximum of 1000 iterations with a neighborhood size of

1



100. Define a neighbor of a solution (x,y) as (x±rand(0.1), y±rand(0.1)), where
rand(0.1) returns a uniformly random number from 0 to 0.1. The initial solution,
from which you start the search, should be generated uniformly randomly inside
the bounds of the function. The algorithm should stop after 1000 iterations or if
it get stuck in local optimum. Meaning that none of the 100 generated neighbors
are a better solution.

For each of the selected functions, run the algorithm 10 times and report:

a) Best coordinates and objective value found over the 10 runs

b) Mean objective value found over the 10 runs

c) For each run, report the local minimum found, the number of iterations
before reaching the local minimum, and the number of calls to the objec-
tive function.

2



Appendix
Python example

1 import numpy as np
2 import pymoo.problems as problem
3 import pymoo.visualization.fitness_landscape as

pymooviz
4

5 # Import 3 problems
6 p1 = [problem.get_problem("rastrigin", n_var =2), "

Rastrigin"]
7 p2 = [problem.get_problem("sphere", n_var =2), "Sphere"

]
8 p3 = [problem.get_problem("ackley", n_var =2), "Ackley"

]
9

10 # Visualization of the selected problems
11 for p in [p1 , p2 , p3]:
12 pymooviz.FitnessLandscape(p[0], angle =(45, 45),

_type="surface").show()
13

14 point = np.array ([[1 ,0.5] ,
15 [0 ,0]])
16

17 # Evaluating each function at specific points and
printing bounds

18 for p in [p1 , p2 , p3]:
19 print(p[1], ":")
20 print(p[0]. evaluate(point))
21 print("Lower␣and␣upper␣bounds:")
22 print(p[0].xl)
23 print(p[0].xu)
24 print("␣")

3


