
J Grid Computing
https://doi.org/10.1007/s10723-020-09534-y

Smart Contracts for Service-Level Agreements
in Edge-to-Cloud Computing

Petar Kochovski ·Vlado Stankovski · Sandi Gec ·
Francescomaria Faticanti ·Marco Savi ·Domenico Siracusa · Seungwoo Kum

Received: 27 May 2020 / Accepted: 14 September 2020
© Springer Nature B.V. 2020

Abstract The management of Service-Level Agree-
ments (SLAs) in Edge-to-Cloud computing is a com-
plex task due to the great heterogeneity of computing
infrastructures and networks and their varying runtime
conditions, which influences the resulting Quality of
Service (QoS). SLA-management should be supported
by formal assurances, ranking and verification of
various microservice deployment options. This work
introduces a novel Smart Contract (SC) based archi-
tecture that provides for SLA management among rel-
evant entities and actors in a decentralised computing
environment: Virtual Machines (VMs), Cloud service
consumers and Cloud providers. Its key components
are especially designed SC functions, a trustless Smart
Oracle (Chainlink) and a probabilistic Markov Deci-

P. Kochovski · V. Stankovski (�) · S. Gec
Faculty of Computer and Information Science, University
of Ljubljana, Ljubljana, Slovenia
e-mail: vlado.stankovski@fri.uni-lj.si

M. Savi
University of Milano-Bicocca, Milan, Italy

F. Faticanti · M. Savi · D. Siracusa
Fondazione Bruno Kessler, Trento, Italy

F. Faticanti
University of Trento, Trento, Italy

S. Kum
Korea Electronics Technology Institute, Seongnam-si,
Republic of Korea

sion Process. The novel architecture is implemented
on Ethereum ledger (testnet). The results show its
feasibility for SLA management including low costs
operation within dynamic and decentralised Edge-to-
Cloud federations.

Keywords SLA management · Edge · Fog · Cloud ·
Blockchain · Smart contract · Smart oracle

1 Introduction

Today, smart applications are being developed for
many domains including smart homes, cities and
communities, robotics, industry 4.0, construction and
similar [23, 29, 30]. Various Artificial Intelligence
(AI) methods are used in order to provide intelli-
gent features to such smart applications. Due to the
greatly varying requirements that may dynamically
change, the technology basis for smart applications
is increasingly represented by the Internet of Things
(IoT), the Cloud technology and blockchain. There are
many expected benefits of using these technologies,
such as improved Quality of Service (QoS) in condi-
tions of dynamic operation and heterogeneity, higher
utilisation of resources, and lower operational costs.
In order to address various non-functional require-
ments of smart applications, Cloud computing today
is stretched to the Edge of the network, and Fog
generally refers to heterogeneous, geographically dis-
tributed Cloud computing offer.

(2020) 18:673–690

/ Published online: 13 October 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-020-09534-y&domain=pdf
http://orcid.org/0000-0001-9547-787X
mailto:vlado.stankovski@fri.uni-lj.si

P. Kochovski et al.

Moreover, the IoT, AI and Cloud technologies
alone are not enough to support dynamic applica-
tion scenarios across broad geographic areas, for
instance, when equipment, robots, cars or smart-
phones move from one place to another. In many
scenarios, the applications are time-critical and it is
therefore paramount to achieve high QoS operation of
the applications. Therefore, stipulating Service Level
Agreements (SLAs) between application users and
infrastructure providers would provide certain level of
guarantee that the required QoS of their AI applica-
tion will be maintained above threshold at all times.
This study addresses the problem of achieving high
QoS by designing and implementing a new SLA man-
agement architecture, which operates promptly and
transparently and is particularly suitable for smart
multi-component applications deployed across the
Edge-to-Cloud computing continuum.

Currently, the key problems when deploying
compute- and network-intensive AI applications in
the Edge-to-Cloud continuum are the great hetero-
geneity of possible application deployment options
coupled with dynamically changing operational con-
ditions [8]. Few possibilities for achieving high QoS
in the Edge-Fog context is by increasing the redun-
dancy, for example, by federating several computing
resources [24], and then, by providing an orchestra-
tor and a load balancing capability to dynamically
(re)deploy AI containers from one computing resource
to another in view of maintaining high QoS [22].

The goal of the present study is to design a
new SLA management architecture that achieves high
QoS operation through federation and orchestration
of Edge-Fog computing offer, and is particularly suit-
able for the deployment of specific AI components
in Edge-to-Cloud environments. This study is moti-
vated by the emergence of blockchain, in particular its
constructs and mechanisms such as Smart Contracts
(SCs) and trustless Smart Oracles [16], and can be
used to implement mechanisms for the dynamic feder-
ation of computing resources (e.g. VMs) coupled with
transparent and traceable orchestration.

In addition to the above, our novel architecture
utilises resource provisioning and application place-
ment methods, which are based on Markov Decision
Process (MDP) to model both internal and external
(contextual information) metrics that affect the result-
ing QoS of the individual AI applications [15]. Since
the runtime conditions can dynamically change, an

automaton – a model derived by using an MDP –
can be used in order to obtain QoS assurances, rank-
ing and verification of available deployment options.
All these three aspects can be used for transpar-
ent and trusted SLA management. Our hypothesis is
that implementing such probabilistic assurances on
blockchain can contribute to achieving trust relation-
ships among the participating entities. The research
value of the present work is the integration of the
MDP method with Edge-to-Cloud resource federation
and orchestration mechanisms implemented through
the use of SCs and Smart Oracles. This study aims
thus at showing that this novel approach can be
used for SLA management in dynamic Edge-to-Cloud
environments.

In summary, the contributions of this study are as
follows:

– a novel blockchain-based SLA management sys-
tem for federated Edge-to-Cloud computing envi-
ronments;

– an unique combination of Smart Contracts and
Smart Oracles, which substitutes third party trust
authorities for transparent and traceable SLA
management;

– the integration of a stochastic MDP method for
QoS-aware orchestration of resources, which is
designed as a plug-and-play software component;

– the implementation of a proof-of-concept SLA
management scenario for the DECENTER Fog
and Brokerage Platform [24], involving registra-
tion of trusted deployment options (i.e. trusted
Edge-to-Cloud computing clusters), deployment,
redeployment of applications and trusted and
transparent management of the service payment
process.

The rest of the paper is organised as follows.
Section 2 identifies the gap addressed by the
present study. Section 3 describes the motivation
for developing SLA management architecture that
introduces implementation of probabilistic decision-
making methods and blockchain technologies for
reliable SLA Management. Section 4 provides an
architecture overview of the proposed solution along-
side with proof-of-concept application (re)deployment
scenarios implemented within the study. Section 5
discusses the results of the experimental evaluation.
Section 6 concludes the study and presents future
improvements of the proposed architecture.

674

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing

2 Background

This study builds on recent developments in three
areas, starting from computing opportunities in the
Edge-to-Cloud continuum based on virtualisation,
trusted SLA management and blockchain technolo-
gies. These developments are discussed briefly in the
following three subsections.

2.1 Computing in the Edge-to-Cloud Continuum

The broad diffusion of IoT devices has significantly
influenced multiple domains, therefore introducing a
plethora of automation opportunities [1, 14, 33]. Such
environments usually produce large quantities of data
(e.g. sensor measurements, images or video streams)
that should be processed and responded upon in a
timely manner. However, performing various opera-
tions over large quantities of data that continuously
move from the field sensor devices to the Cloud com-
puting infrastructures, can lead to low QoS that can
be due to connectivity performance issues between
the field devices and the Cloud infrastructures. As a
result, more distributed computing paradigms that are
in close proximity to data sources, such as Edge and
Fog computing, have emerged as a means to address
such requirements. Edge computing is a highly dis-
tributed approach that performs computational oper-
ations on multiprocessor devices (e.g. Raspberry Pi,
BeagleBoard) that operate in proximity of the sen-
sor devices [26]. Fog computing is similar to Cloud
computing, only that it lies somewhere between the
IoT devices and the Cloud computing data centres [2].
However, organisations that are adopting the new IoT
concepts and migrating their computing power to the
Edge-to-Cloud computing continuum are still facing
difficulties in situations when they need to guarantee
the high QoS of their applications, which are often
deployed across multiple computing infrastructures
from various providers.

2.2 Blockchain Essentials

Blockchain (BC) technology is a distributed ledger
technology that can be used to address several require-
ments of distributed and decentralised systems. These
include autonomy, data management, privacy, secu-
rity, transparency and traceability. The blockchain
technology has the role to replace third party trusted

and centralised entities (i.e. certified middleman) by
distributing trust in a decentralised network. In order
to fully exploit its potential, system architects must
carefully define the requirements of the distributed
and decentralised system. In particular, they must
focus on the agreement policy among the sub-systems
and select the adequate blockchain topology ecosys-
tem that offers additional advanced functionalities,
such as SCs. Thus, in order to ensure trust, an agree-
ment policy (i.e. consensus protocol) has to be satis-
fied. For example, the majority of blockchain network
participants have to agree, through the voting sys-
tem, on the modification of the blockchain ledger
properties or rules.

The first practical implementation of blockchain is
Bitcoin [21], whose simplicity of exchanging digital
assets encouraged many researchers and blockchain
enthusiasts to develop their blockchain cryptocurren-
cies. Vitalik et al. [3] complemented the exciting
blockchain concept by introducing Turing complete
SCs that are similar to general (notary) contracts with
limited, but at the same time sufficient functionalities
to cover a wide range of use-cases.

Using blockchain and SCs within existing Cloud
architectures has much potential. Carminati et al. [5]
investigated blockchain as a platform for secure inter-
organisational business processes management. Zhang
et al. [34] presented TOWN CRIER (TC) aiming to
provide trustworthy (trustful) data to SCs through a
middleman service (TC Server). Furthermore, Smart
Oracles are useful means that reduce the necessity of
costly operations on a blockchain, such as storing and
using data within SCs. In particular, external data that
is provided by Smart Oracles can be used within an SC
in order to decide, if a deployment option can satisfy
the requested QoS, and consequently used to deploy
an AI container on the deployment option automati-
cally [16]. Advanced Smart Oracle solutions, such as
Provable1 (rebranded Oraclize2) provide Smart Con-
tract templates, which ensure Oracle correct data flow.
Another Smart Oracle solution is the Ethereum based
Chainlink network3 that provides reliable tamper-
proof inputs and outputs for SCs on any blockchain
and at the same time overcomes the limitation of the
Provable transparency of the Smart Oracle running

1https://provable.xyz/
2http://www.oraclize.it/
3https://chain.link/

675

https://provable.xyz/
http://www.oraclize.it/
https://chain.link/

P. Kochovski et al.

Table 1 Positioning of the present approach among related works

Work Objective Trust evaluation method Use of smart oracles Computing paradigm

Gill et al. [10] SLA-Management Self-Management N/A Cloud

Labidi et al. [17] SLA-Management Third-Party Service N/A Cloud

Li et al. [18] Resource Matchmaking Third-Party Service N/A Cloud

Zhang et al. [35] SLA-Management Third-Party Service N/A Cloud

Zhou et al. [36] SLA-Enforcement Blockchain ✗ Cloud

Zhou et al. [37] SLA-Enforcement Blockchain & SC ✗ Cloud

Proposed approach SLA-Management Blockchain & SC ✓ Edge-to-Cloud

instance(s). To be more concrete, Chainlink enables
running one’s own Smart Oracle dockerized instances
with custom cost policy (e.g. the request price deter-
mined in LINK tokens may be set). These few useful
studies form the basis for the SLA management with
SC in the present work.

2.3 Related Works on SLA Management

SLAs play vital role in the management of service
delivery among different parties. In particular, SLAs
are essential in mediation of applications between sys-
tems. In the context of Cloud computing, an SLA is
often considered as a set of constraints that ensure cos-
tumer’s benefit when the agreement is violated by the
infrastructure provider. For instance, SLAs are very
important when defining requirements, such as avail-
ability and reliability. A suitable definition of SLA
was presented by Buyya et al. [4]: SLA is an offi-
cially exchanged document that describes (or tries to
express) in measurable (and maybe qualitative) terms
the service being presented to a customer. Any met-
rics involved in an SLA should be capable of being
controlled on a systematic basis and the SLA should
record by whom.

A typical SLA lifecycle is composed of several
phases, such as: service use, modelling, SLA man-
agement, SLA enforcement and SLA conclusion.
According to a systematic survey [19] on SLA in
IoT, the SLA management, though, is an important
phase that covers multiple aspects (i.e. SLA defi-
nition, SLA modelling, SLA negotiation) that has
received less research attention. A relevant challenge
in SLA management is the trust between engaged
parties, particularly the authority that detects SLA vio-
lation. In commercial solutions, often the provider
handles the monitoring and violation detection

(e.g. Amazon CloudWatch4). Since each service
provider has its own monitoring and violation detec-
tion policies, proving an SLA violation can be a
very complex operation for service costumers. Thus,
establishing a trustful relationship between the ser-
vice providers and consumers is very important. Gill
et al. [10] presented a framework for self-management
of cloud resources, whose software components are
described in few consecutive studies [27, 28] and
[11]. Their framework provisions and schedules cloud
resources, whilst maintaining SLAs and reducing SLA
violation rate. In their studies, the SLA management
resides on the side of the service providers. On the
other hand, to improve the trust that the consumers
have in the service providers, some studies provide
tools that assist them in monitoring the SLA. For
instance, Muller et al. [20] proposed a third party
SLA management platform that generates compre-
hensive SLA violation’s explanations in order to aid
the user to renegotiate SLAs. In addition, Labidi
et al. [17] described a monitoring approach comple-
mented with semantic SLA modeling, which provides
the consumers with comprehensible models of SLA
documents.

To avoid biased SLA management, some studies
propose approaches that guarantee trustful SLA man-
agement by including a third party to handle the SLA
management. For instance, authors of [18] designed
a service operator trust scheme for resource match-
making across multiple Clouds and proposed a trust
evaluation method based on information entropy. Sim-
ilar approach was also proposed by Zhang et al. [35],
whose SLA management framework utilises a third-
party auditor to ensure the benefit of consumers.
In particular, their auditor is designed to verify and

4https://aws.amazon.com/cloudwatch/

676

https://aws.amazon.com/cloudwatch/

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing

Tier 1 Microservices

AI Application

IoT Devices

AI Model

Container
Deployment

Container
Deployment

Forward Data

AI Method

Tier 2 Microservices

AI ModelAI Method

AI
Processing

Data
Postprocessing

Data Analysis
Visualisation

Storage
Data

Preprocessing
Data

Ingestion

Tier 1: Cloud-Fog

Communication Protocols

Sensor Stream Data

Tier 2: Edge

AI
Processing

Data
Postprocessing

Data
Preprocessing

Data
Ingestion

Fig. 1 Video surveillance application implemented in a two-tier architecture

resolve the violations that can appear between a ser-
vice provider and its consumers. However, in such
schemata, all participants are obliged to trust a cen-
tralised third-party broker. Since trusting a third-party
SLA management system can be difficult in reality, a
blockchain-based SLA management system can aid to
overcome that problem [36, 37], where the blockchain
offers complete transparency and SLAs are precisely
declared in the SC. In addition, blockchain integra-
tion into SLA management systems can lead towards
a automated, simplified and less expensive sharing
of infrastructures using SLA [13] and compensation
between providers and consumers in case of SLA
violation [25].

Our work complements and improves on the above
efforts by delivering a new architecture for efficient
SLA management in the Edge-to-Cloud where third
party trust authorities are substituted with SC func-
tions that automate the process and enhance trust
between service providers and consumers in a loosely
coupled, dynamic system. In contrast to previous stud-
ies, the proposed architecture integrates the triumvi-
rate of technologies: blockchain, multi-objective deci-
sion making and multi-tier monitoring to assure auto-
mated and transparent interactions among humans and
artificial agents across the complete Edge-to-Cloud
continuum (Table 1). Furthermore, this architecture
addresses the limitations of existing blockchain-based
SLA management solutions, particularly, it works
based on less costly off-chain data which is facilitated
through the use of Smart Oracles. Finally, a proof of
concept and a feasibility evaluation of the proposed
SLA management architecture is presented by inves-
tigating the trade-off between execution time and cost
of the overall process.

3 Motivation

The motivation for this study is derived from the lat-
est trends in software engineering, which are based
on building flexible and reusable AI applications
by implementing a multi-tier application architecture.
However, splitting AI methods into several computing
tiers, such as into Front and Rear parts of Deep Learn-
ing Neural Networks, may lead to greater privacy and
security of the information when it is being executed
in the Fog [6].

In this study, we focus on a two-tier AI applica-
tion, which is designed for video surveillance and is
necessary to satisfy high QoS standards, thus respect
SLAs. However, the overall approach is applicable to
AI applications designed by following different design
patterns. The European Union - Korea DECENTER
project5, in which we participate, currently imple-
ments several use case scenarios in which Deep Learn-
ing Neural Networks are applied to video streams.
These scenarios include smart street crossings, smart
construction, robotic vision and smart homes. For
example, a two-tiered AI application can be used in the
area of the smart construction sector in order to detect
various safety violations, such as detecting if work-
ers wear safety equipment. The execution of the Front
part of the Deep Neural Network close to the Edge
may contribute to greater privacy, while the execution
of the Rear part in a more powerful Fog computing
resource can be used to improve the QoS.

This generic two-tiered application design is depic-
ted in Fig. 1. The application is composed of several

5https://www.decenter-project.eu/

677

https://www.decenter-project.eu/

P. Kochovski et al.

containerised components, which are organised for
deployment onto two different tiers. The first tier is
composed of Cloud computing resources that allow
executing software components that require greater
computing power. For instance, the first tier is capable
of executing the Rear part of deep learning methods
(e.g. TensorFlow) in order to analyse the incoming
already preprocessed video frames. The second tier
represents the Edge computing resources that execute
the software component near the video surveillance
data sources. Here the sensor data is preprocessed
and an AI method is executed in order to perform
time-critical data analysis.

The decision upon a deployment option for this
application is a complex problem. There exist vari-
ous internal and external metrics that could influence
the resulting QoS of the application. For example, a
definitive QoS metric for the application is consid-
ered to be its response time, that is, the time for a
video frame to pass from the tier-two components
up to the end of the tier-one components pipeline.
This resulting QoS can be influenced by network
related conditions (e.g. attributes like latency, through-
put, packet loss and similar) and computing resource
related operational conditions (e.g. CPU cores and
available memory).

In our practical use case, the second tier is located
in Ljubljana, Slovenia, and is composed of five
deployment options, whereas the first tier is com-
posed of 40 deployment options that are spread
across Europe, Asia, Australia and North America.
All deployment options are enlisted in Table 2 within
Section 5.

In order to achieve high QoS in its operation, the
smart AI application should be capable of immedi-
ate reaction in case of a high probability of an SLA
violation. This means that the software engineer may
set this probability in a way that a redeployment of
the application component in the first tier will hap-
pen whenever the probability of not withholding the
required QoS threshold is too high. In our study, the
SLA management and the redeployment process is
performed in a transparent, traceable and autonomous
manner. These properties are achieved through the use
of blockchain-based technologies, including SCs and
Smart Oracles as elaborated in the following.

4 Blockchain-based SLA Management

In the following, we elaborate our novel SLA manage-
ment architecture and system implementation that is
designed to provide high QoS operation to DECEN-
TER’s smart applications. The goal of our proposed
SLA management architecture is to facilitate an auto-
mated and transparent decision-making process for
(re)deployment of two-tier applications in the Edge-
to-Cloud computing continuum.

The proposed architecture implements MDP meth-
ods that aid to automatically rank the available deploy-
ment options according to prior usage information,
current monitoring data and QoS requirements that are
precisely defined within the SLA.

In order to achieve these technical goals, the
proposed architecture allows registering available
deployment options by providers, definition of

Table 2 Experimental testbed Edge-to-Cloud infrastructures used for the deployment process

Deployment option CPU cores vRAM Location Cost [$/month] id

arnes-0 1 4 Ljubljana 0 0

g1-small 1 1.7 Frankfurt, London, Tokyo, Sydney, Oregon 16.56; 16.56; 16.45; 18.24; 13.13 1-5

n1-standard 1 1 3.75 31.27; 31.27; 31.17; 34.45; 24.27 6-10

n1-standard 2 2 7 62.55; 62.55; 62.34; 68.9; 48.55 11-15

n1-standard 4 4 15 125.09; 125.09; 124.68; 137.8; 97.09 16-20

n1-standard 8 8 30 250.19; 250.19; 249.37; 275.6; 194.18 21-24

a1.medium 1 2 Frankfurt, Tokyo, Sydney, Oregon 21.31; 23.50; 24.38; 18.67 25-29

a1.large 2 4 42.61; 47.0; 48.76; 37.34 30-33

a1.xlarge 4 8 85.21; 93.99; 97.51; 74.67 34-37

a1.2xlarge 8 16 170.41; 187.98; 195.01; 149.33 38-41

678

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing

SLA user requirements and autonomous deploy-
ment and redeployment of applications among the
available deployment options. The architecture can
be observed through three scenarios, which are
the following: (1) registering a certified deploy-
ment option, (2) automated deployment of applica-
tions and (3) automated redeployment of applications.
These three scenarios are elaborated in the following
subsections.

4.1 QoS-aware SLA Assessment

In order to develop our proof-of-concept QoS mod-
els and provide autonomous SLA management,
the proposed architecture utilises infrastructure- and
application-level metrics. Infrastructure-level metrics
show the current status of the deployment options;
thus, they are necessary to successfully perform the
deployment process. The application-level metrics are
accumulated once a deployment is finished; thus,
they are used as additional metrics for performing
redeployment operations. The used attributes for the
(re)deployment processes are as follows:

1. Infrastructure-level attributes:

– Network throughput (Mb/s) – the rate at
which data is transferred between two end-
points. At this level the endpoints are the
source of data on one side and the deployment
options on other side;

– Network latency (ms) – the time required for
a packet to be transferred between the source
of data and the deployment options;

– Cost ($/month) – cost for monthly use of a
deployment option;

– Amount of memory – amount of memory that
a deployment option offers;

– Amount of CPU cores – amount of CPU cores
that a deployment option offers.

2. Application-level attributes:

– Throughput (Mb/s) – the rate at which data is
transferred between the two tiers of deploy-
ment options;

– Latency (ms) – the time required for a packet
to be transferred between the two tiers of
deployment options.

The proposed architecture in this study is not lim-
ited to the specific set of QoS metrics and non
functional requirements, because it supports any quan-
titative attribute that may be of interest to the software
engineer.

4.2 Architecture Overview

This section presents the high-level architecture
design for SLA management that implements SCs to
automate the deployment process which is depicted
on Fig. 2. The designed multi-level architecture

Service
Consumer

Service
Provider

Smart
Contract

Smart
Contract

Register a deployment option Automated deployment of applications Automated redeployment of applications

GUI

Smart
Oracles

TIER 1
Fog-Cloud

TIER 2
Edge

1

1

2

2 3

3

4 5
6

4
Decision-Making

Algorithms

Monitoring
System

Monitoring
Server

Monitoring
Agents

Monitoring
Probes

Alarm Trigger

Orchestration
System

Blockchain
Ledger

B

A
5

6

9
7

8

10

13

11

12

14 15

1

2

3

4

Application Layer gnikaM-noisiceDreyaLniahckcolB
Layer

Edge-to-Cloud
Computing Layer

Fig. 2 Architecture for SLA management and detailed design of loosely coupled system components

679

P. Kochovski et al.

follows the interoperability standards set by organisa-
tions such as the Cloud Native Computing Foundation
(CNCF)6, OpenFog Consortium7 and Edge Comput-
ing Consortium Europe (ECCE).8 Each architecture
level is described in the following.

1. Application Layer is an application with an intu-
itive graphical user interface (GUI). It is an entry
point that the software engineer uses to define
QoS requirements, which are incorporated into
SLA. This layer is directly communicates with the
Blockchain Layer, which is the Ethereum ecosys-
tem. Thus, it allows the user to trigger a SC
execution.

In order for the Application Layer to commu-
nicate with the Ethereum (ETH) ecosystem, it
implements ETH bridge called Metamask9, which
plays pivotal role in the process. Primarily, Meta-
mask is an Ethereum wallet that allows users
to: (1) create and switch accounts that can be
used in various ETH networks (e.g. Main ETH
network, Ropsten, Kovan or Rinkeby); (2) per-
form transactions between accounts. It facilitates
the interaction with the Ethereum ecosystem by
injecting a Javascript library called web3.js [9].

2. Blockchain Layer is necessary to automate the
SLA management process and empower fair-
ness between the involved parties (i.e. service
providers and consumers) and executes traceable
and transparent transactions on the Blockchain.

The blockchain implementation is based on
public Ethereum ledger as a public blockchain
environment, because it is composed of two main
components: SC templates and Smart Oracles.
There are two main types of SC utilised in
the system: SCs for registration of deployment
options on the blockchain and SCs for automated
(re)deployment of applications.

The deployment of the SCs occurs on demand
through the blockchain service which plays the
role of a non-biased system that executes the SC
and pays the service provider in case the SLA is
not violated. However, in case there is an SLA
violation, the SC terminates, pays the service
provider for the service provided until the moment

6https://www.cncf.io/
7https://www.openFogconsortium.org/
8https://ecconsortium.eu/
9https://metamask.io/

of the SLA violation, whilst compensating the
service consumer for the remaining of time. A
more detailed overview of the SCs work and the
SLA management workflow is elaborated in the
sections bellow.

However, SCs by default cannot act outside the
blockchain, thus they are not capable to retrieve
off-chain data. Since SCs in this SLA manage-
ment system have to communicate with external
services, such as computing nodes, QoS mon-
itoring system or decision-making mechanisms,
Smart Oracles had to be implemented. The Smart
Oracles are trusted third-party services that pro-
vide means for SCs to communicate with reg-
istered APIs from the external services. This
approach results in enhanced integrity of the func-
tions that verify the correctness of the API queries
by using unique API keys and thus avoid calls
from potential malicious SCs.

3. Decision-Making Layer estimates the optimal
deployment option for deployment of container-
ised software components and initiates the con-
tainer deployment process. In order to estimate
an optimal deployment option, this layer queries
a Smart Oracle from the Blockchain Layer to
retrieve monitoring data and prior usage knowl-
edge only for deployment options, which are reg-
istered on the blockchain. This layer is composed
of components that are products of our earlier
research work. In particular, the Decision-Making
Layer is composed of three systems: decision-
making mechanism [15], monitoring system [31]
and an orchestration system [22].

The implemented decision-making mechanism
is based on the Markov Decision Process (MDP)
that generates a probabilistic finite automaton
that is built for each microservice. MDP utilises
the automaton to derive utility value for each
deployment option. These values are later used
to produce a ranking list, where the first ranked
deployment option is considered as an optimal
deployment option and returned as an output
result that satisfies the engineer’s QoS require-
ments. The MDP automaton contains: a set of
states (i.e. deployment options); a set of actions
(i.e. deployment actions applicable to the set of
states); a set of transition probabilities, which rep-
resent the transition probability between states
due to the available deployment actions; and a set

680

https://www.cncf.io/
https://www.openFogconsortium.org/
https://ecconsortium.eu/
https://metamask.io/

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing

of rewards, which represent the expected reward
for transitioning from one state to another. Transi-
tion probabilities, which are estimated from prior
usage experience of the deployment options and
state rewards, which are estimated from the mon-
itoring metrics are essential when calculating the
utility of each state. A detailed description of
the algorithm including the calculation of rewards
and transition probabilities is available elsewhere
[15].

The monitoring system constantly gathers QoS
data from the deployment options that are regis-
tered on the blockchain. Each of those deploy-
ment options run Monitoring Agents and Mon-
itoring Probes, which accumulate the QoS met-
rics and forward them to the Monitoring Server.
In addition, the monitoring system contains an
Alarm Trigger, which is a rule-based entity that
continuously verifies the incoming monitoring
data. If the Alarm Trigger experiences abnormal
behaviour (i.e. SLA violation) it is responsible to
initiate the redeployment process.

The orchestration is performed by automat-
ically with an orchestration system such as
Kubernetes. Once the decision-making mecha-
nism delivers an optimal deployment solution
and a SC is successfully executed, the orchestra-
tor receives deployment instructions (i.e. YAML
script) that provide information on the deploy-
ment infrastructure, applications for deployment,
backup and replication policies.

4. Edge-to-Cloud Computing Layer is composed of
deployment options, which are registered on the
blockchain by the service providers. The deploy-
ment options are used for deployment of the
containerised two-tier applications, where each
tier of deployment options play a different role.
For instance, the Edge-based deployment options
are responsible for running the software compo-
nents that require less computing power, whereas
the other components run on the Cloud/Fog-based
deployment options.

4.3 Process Workflow

The proposed system consists of two types of SC: (1)
a SC for registering deployment options on the BC
and (2) a SC for executing (re)deployment operations
through the blockchain whilst following the SLA. The

workflow of the proposed architecture can be pre-
sented with three correlated scenarios. A high level
representation of the interactions between architecture
components is presented in Fig. 2. In addition, the
detailed flow of interactions between the fundamental
components in the presented system within the three
scenarios are depicted in Fig. 3.

The first scenario is registration of certified deploy-
ment options. It allows infrastructure providers to reg-
ister via blockchain their available deployment options
in the pool of certified deployment options. In order to
do so, the infrastructure provider (1-2) invokes a SC
to execute methods for (3) registration a deployment
option on the BC. Because the deployment options
are off-chain data, (4) BC communicates with them
through a Smart Oracle and (5) assigns to the spe-
cific deployment option a public address (i.e. digital
wallet). When the public address is assigned, the SC
registers the new public address onto the BC. Finally,
(6) the provider verifies the public address of the
deployment option.

The second scenario is automated deployment of
applications. It performs SLA assessment, prepara-
tion, negotiation, contracting and deployment of soft-
ware components on the optimal deployment options.
This scenario is executed in the following 15 consec-
utive steps: (1) the software engineer defines applica-
tion QoS requirements and preferred usage-time for
the deployment option; (2) the GUI through the trig-
gerSC() method invokes the SC through the Metamask
Ethereum bridge; (3) the SC initiates deployment
process and (4) triggers the Smart Oracle through
the selectDO() method; (5) the Smart Oracle gath-
ers information on blockchain-certified deployment
options and (6) triggers the decision-making mech-
anism; (7) the decision-making mechanism retrieves
prior usage data and current monitoring metrics for
the available deployment options from the Monitor-
ing System, (8) estimates the optimal option and (9)
returns the results to the Smart Oracle, which (10)
triggers the SC to (11–13) verify the wallet address,
executes the deployment process; (14) the Smart Ora-
cle triggers the Kubernetes Orchestrator cluster to
(15) deploy the two-tier application on the selected
deployment options.

The third scenario extends the second scenario by
adding the automated redeployment functionality. The
monitoring system, which is a part of the Decision-
Making Layer, contains an Alarm Trigger that

681

P. Kochovski et al.

User Blockchain Monitoring
System

Orchestration
System

Deployment
Options Pool

Decision-Making
Method

Smart Oracle

determinePrice()

determinePrice()

consensusFinished()

consensusFinished()

requestPayment()

requestPayment()

sessionStartNotification()

sessionStartNotification()

payService()

payService()

deploy()

deploy()

event startService()

event startService()

triggerDeployment()

updateDeployment()

deploymentNotification()

deploymentNotification()

event priceNotification()

event priceNotification()

returnMonitoringData()

initiateRefund()

calculateMDP()

triggerAlarm()

oiranecstne
my ol pe

D
oi ranecstne

myolpede
R

thresholdBreach == true

triggerStop()

Quit service condition
satisfied requestStopService()

requestStopService()

terminatedSessionNotification() terminatedSessionNotification()

checkLockState()

(SCduration >=currentTime) || (initiateRefund == true)

else

alt

event
FundsReleaseEvent()

triggerSC()

triggerSC()
selectDO()

returnMDPResult()
Smart Oracle response

determinePrice()

triggerMDP()
requestMonitoringData()

returnMonitoringData()

calculateMDP()

requestAvailableDO()
getAvailableDO()

event priceNotification()

Fig. 3 Sequence diagram of the deployment and redeployment scenarios

constantly examines the monitoring data for threshold
violations (1). Once a violation is detected it trig-
gers the decision-making mechanism to reassess the
probability of achieving high QoS (2). In case the
probability for QoS violation is high (i.e. above certain
threshold), the decision-making mechanism retrieves

a new optimal deployment option. The decision-
making mechanism then directly forwards the solu-
tion to the SC through its public address that is
dedicated for the redeployment process (3-4). Once
the SC is triggered, it initiated the compensation
process through the initiateRefund() function that is

682

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing

represented within the alternative scenario (i.e. alt)
from Fig. 3. In particular, the SC responsible for the
initial deployment estimates the amount of time the
deployment option was utilised and pays the service
provider, whilst the service consumer is reimbursed
for the remaining time for which the deployment
option remained unused through the SC event Fund-
sReleaseEvent(). After the compensation is finished,
the SC has the same workflow as for the deploy-
ment scenario, which is: price determination, reaching
consensus, executing payment and deployment of the
application.

4.4 Smart Contract Implementation Details for SLA
Management

This subsection will provide implementation details
about the SCs that were designed for the SLA man-
agement scenario. For the purposes of this study, two
SC were designed: SC “A” that is necessary to reg-
ister deployment options on the BC and SC “B” that
is responsible for the (re)deployment scenarios. Both
SCs follow a design pattern that allows one version
of the SCs to be deployed and used multiple times
until destroying them. The design of the SCs follows
the Oracle pattern proposed by Wöhrer et al. [32] and
best practices presented in the OpenZeppelin frame-
work.10 Contracts are available in the following public
repository.11

The developed SC “A” allows service providers to
register their deployment options on the Blockchain.
This will allow to have transparent information for
each deployment option. In particular, only deploy-
ment options registered on BC through this SC will
be used during the decision-making process. SC “A”
is composed of two pillar functions registerDO() and
deleteDO() where the first function is used by the ser-
vice provider to register a deployment option on BC
with requested requirements passed as an input to the
SC function. The second function deleteDO() is use
to remove the existing deployment options from the
set of available ones, ordinary due to the significant
change of the requirements or the deprecation of the
deployment option.

10https://openzeppelin.org/
11https://bitbucket.org/friljubljanaslovenia/
smart-contracts-for-sla/

The developed SC “B” deals with the
(re)deployment scenario. The SC contains functions
for managing the deployment process, based on the
Chainlink Smart Oracle that accesses information
from the decision-making mechanism. In addition,
the SC “B” is responsible to compensate the service
consumers if the SLA is violated, by implementing
dynamic price business model. In particular, the ser-
vice consumer knows the total cost that is needed for
the deployment option utilisation and once an agree-
ment is reached, consumer’s funds are locked by the
SC. If the maximum utilisation time limit is reached
then the funds are unlocked and the service provider
is fully paid. However, if there is an SLA violation,
the service provider receives funds only for the time
their deployment option was used and the rest of the
funds are refunded to the service consumer. This SC
refund approach make it possible to automate and
facilitate the monetising process among the service
provider and the service consumer.

In the context of the deployment, the Smart Ora-
cle plays the crucial role of managing the data flow
between the Smart Contract consisting of on-chain
data and the dedicated services (e.g. orchestration ser-
vice) consisting of off-chain data. By doing that we
preserve high level of traceability and at the same
time the condition fulfilment checks are increased. To
fully exploit the Smart Oracle capabilities it is rec-
ommended to run all Smart Oracle triggered services
on a dedicated hardware to preserve full auditing and
data verification of all the triggered data through the
services.

5 Experimental Evaluation

The goal of the experimental evaluation is to show
that the proposed architecture for SLA management
with smart contracts is fully functional and can be
used to perform (re)deployment operations in order
to maintain high QoS at all times. The experimen-
tal evaluation consists of evaluating the probabilistic
decision-making method and the blockchain perfor-
mance. The proposed solution in this study was tested
by a user (software engineer) that is based in Ljubl-
jana, Slovenia, who used the system to deploy an AI
application on an optimal deployment option. Due to
the variability of the monitored metrics (i.e. network-
ing, infrastructure and application metrics), an optimal

683

https://openzeppelin.org/
https://bitbucket.org/friljubljanaslovenia/smart-contracts-for-sla/
https://bitbucket.org/friljubljanaslovenia/smart-contracts-for-sla/

P. Kochovski et al.

deployment option at one instance in time may not be
an optimal solution in another instance in time.

The engineer could deploy his application on one
out of 42 available deployment options within Tier 1
(Fog-Cloud) and on one out of 5 deployment options
within Tier 2 (Edge). The Tier 2 deployment options
were hosted on the network edge, near to the sources
of data, and were not subject to experimentation.
On the other hand, the available deployment options
from Tier 1 were hosted on Google Cloud Platform12,
Amazon AWS EC213 and ARNES14, at 6 different
locations: Ljubljana, Frankfurt, London, Tokyo, Syd-
ney and Oregon. The current properties of the utilized
deployment options are listed in Table 2. The network
performance of the available deployment options is
depicted in Figs. 4 and 5, where it can be seen that
geolocation plays important role in the network per-
formance. In particular, all deployment options that
are located geographically closer to Tier 2 show sig-
nificantly better network performance regarding the
latency threshold. Therefore, the (re)deployment in
this scenario will also consider parameters such as the
network performance between the two tiers.

Tier 2 deployment options have normally attached
on-field sensors and cameras that produces the data for
the AI application. Therefore, the deployment of soft-
ware components on Tier 2 deployment options in this
scenario mainly depends on previously determined
hard constraints by the software engineer (e.g. sensor
type of data, sensor location, data context and similar).
Therefore, our evaluation related to (re)deployment
techniques is focused on Tier 1 deployment options.

5.1 Probabilistic Decision-making Evaluation

The probabilistic model for the deployment process
was generated by using multi-level monitoring and
usage data that was collected in a period of one month,
prior to the experimental evaluation.

For the needs of the experimental evaluation, the
software engineer had an AI application that had to
process high-resolution video surveillance data, there-
fore the following QoS requirements were selected:
CPU cores more than or equal to 4, vRAM more than
or equal to 4GB, cost less than or equal to 100$/month,

12https://cloud.google.com/
13https://aws.amazon.com/ec2/
14https://arnes.splet.arnes.si/

application level latency less than or equal to 65 ms
and throughput more than or equal to 8 Mb/s. The
implemented MDP considers the QoS requirements as
soft constraints, thus the MDP solution may not sat-
isfy all constraints, but will tend to choose the option
with the lowest amount of threshold violations. For
the purposes of the SLA Management, the software
engineer also selected the following Service Level
Objectives (SLOs): application level latency less than
100 ms, application level throughput higher than 6
Mb/s, deployment option’s memory utilisation less
than 80% and deployment option’s CPU utilisation
less than 90%.

Once a deployment decision takes place, the
deployment option was monitored using the
Prometheus Monitoring System15 against the defined
SLOs. Then, artificial network latency (see Fig. 6) on
the chosen deployment option was gradually applied,
using the network emulator NetEm16, which forced
the alarm trigger to react. When the alarm trigger [31]
detects a violation, it notifies the probabilistic model
to perform probabilistic evaluation and estimate the
redeployment confidence level in order to initiate
redeployment process. Each time the MDP can pro-
vide a new deployment result. The results, presented
in Table 3 show the scores of the top five ranked
deployment options for deployment and redeployment
of the AI applications. In both scenarios, deployment
and redeployment the top ranking deployment options
were the ones that satisfied the highest amount of QoS
requirements and were located geographically closer
to Tier 1. In this case, for both scenarios deployment
an redeployment, the mechanism chose deployment
options that satisfied all QoS requirements. Although
the deployment option with id=0 was in closes prox-
imity to Tier 1, during the evaluation process it did
not met the requirement for CPU cores amount, thus
with one threshold violation was ranked fifth during
the redeployment scenario.

Figure 6 depicts the difference in the monitor-
ing values before and after the redeployment took
place during the experimental evaluation. The moment
when the monitoring values of a1.xlarge with id=34
were close to violate the SLA agreement, the system
had a high level of redeployment confidence that led

15https://prometheus.io/
16http://man7.org/linux/man-pages/man8/tc-netem.8.html

684

https://cloud.google.com/
https://aws.amazon.com/ec2/
https://arnes.splet.arnes.si/
https://prometheus.io/
http://man7.org/linux/man-pages/man8/tc-netem.8.html

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing

Fig. 4 Latency between the source of data and the deployment options

Fig. 5 Throughput between the source of data and the deployment options

685

P. Kochovski et al.

Fig. 6 Monitoring data comparison before and after the rede-
ployment process. The MDP method’s probabilistic assurances
are provided as confidence levels and are used to make a

decision on redeployment. When such decision is taken the
MDP decision-making method is used to choose a new deploy-
ment option based on the available pool of resources

towards initiating the redeployment process and selec-
tion of a1.large with id=30 as optimal deployment
option.

5.2 Blockchain Performance Evaluation

SCs have an important role in the system architec-
ture, therefore the individual functions including the
SC deployment have to be efficient in terms of cost
and execution performance. In comparison to the tra-
ditional SCs interacting fully with on-chain data, our
SCs “A” and “B” presented in Section 4.4 include
Smart Oracle mechanisms that increase the data inter-
action on an off-chain level but at the same time
slightly increase the overall cost of the Smart Oracle
enabled functions.

In our experimental environment we used the
Ethereum testing environment Rinkeby and we pre-
sented the averaged results of 10 executions, running
own Chainlink nodes with the determined Smart Ora-
cle cost per interaction of 0.001 LINK tokens, which
is equivalent to the main Ethereum environment of
approximate 0.037 USD. The evaluated SCs (“A” and
“B”) from the gas consumption metric are depicted
in Fig. 7. The results indicate that the most expensive
functions are constructors and following the Smart
Oracle enabling functions. Since the deployment of
the SC “A” is performed only once and the deployment
of the SC “B” once per service consumer, the SCs are
costly feasible. Moreover, the majority of the func-
tions is triggered by the Service Provider stakeholders
(e.g. Service owner, Cloud providers, etc.), while only

Table 3 Deployment and redeployment ranking results of top five deployment options

Deployment Redeployment

Rank Deployment option ID Score Deployment option ID Score

I a1.xlarge 34 167.96 a1.large 30 161.57

II a1.2xlarge 38 159.22 n1-standard-8 21 157.31

III a1.large 30 158.21 n1-standard-4 16 157.09

IV n1-standard-8 21 158.03 n1-standard-2 11 151.85

V n1-standard-4 16 152.84 arnes-0 0 150.98

686

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing

Fig. 7 Gas consumption of all SC functions in SC “A;; and SC “B”

4 functions (triggerSC, payService, checkLockState
and triggerStop) are executed from Service Consumer
stakeholder. The Service Consumer SC functions are
relatively unexpensive and thus make the SCs overall
costly acceptable.

It is known that the execution of SCs is possible
within one block or multiple ones. We focused on
the main three functionalities registration, deployment
and redeployment. The results shown in Table 4 indi-
cate that the fastest operation is registration, due to the
simplicity of the SC functions, but the deployment and
redeployment execution time varies from 1 to 2 blocks
depends on Ethereum network load and used transac-
tion fee. In the case of low execution time it is used

Table 4 Performance analysis for registration, deployment and
redeployment operations

Operation Low execution High execution

Time [sec] Time [sec]

Registration 12 15

Deployment 14 24

Redeployment 13 18

high transaction fee of 20 ·10−9 ETH, otherwise in the
case of high execution time it is used low transaction
fee of 1 · 10−9 ETH [7]. Even though the performance
of the SC functionalities are consuming and it is not
possible to reduce the execution below one block (that
is approximate 15 seconds), the trust benefits among
the involved entities prevail.

5.3 Critical Analysis

The proposed SLA management system was fully
tested and evaluated. Our evaluation addressed the
performance of the probabilistic decision-making and
the implemented blockchain solutions. The MDP-
based decision-making method derived the ranking of
the deployment options based on current monitoring
data and prior usage data that was aggregated within
the duration of one month. In both cases, that is,
deployment and redeployment, the method provides
correct output by ranking first the deployment options
that satisfy the highest number of soft QoS require-
ments. Hence, the decision-making method proves
useful for the design of an SLA management sys-
tem. Furthermore, the blockchain implementation was

687

P. Kochovski et al.

evaluated in terms of cost and execution performance,
because these criteria have an essential role, if we
intend to achieve business value. Our results shown
that the blockchain operations take at average no more
than 24 seconds to execute, thus allowing the system
to timely address any SLA violations, while at the
same time satisfying high security and trust related
standards that are offered by this technology. On the
other hand, the transaction fees for the operations
depend on the amount of traffic that the blockchain
is experiencing and the required execution time for
each operation. In other words, the faster the oper-
ations need to be executed, the more expensive it
will be. Although, as described in Section 5.2, the
transaction fees are significantly low during the eval-
uation process, there is still space to further optimise
the performance of our blockchain implementation. In
summary, the proposed SLA management approach
is able to deliver QoS-aware deployment operations,
whilst at the same time maintaining trust relationships
among the involved entities.

6 Conclusion and Future Scope

The motivation of the present study is to address the
requirements of computationally, memory and net-
work intensive microservices. With Edge-to-Cloud
computing offer it is necessary to find new and
dynamic means for the management of SLAs in view
of achieving high QoS operation of the microser-
vices. This study explores the possibility of using
Blockchain and Smart Contracts and presents a new
architecture that is, to the best of our knowledge, the
first of its kind.

Based on our implementation and presented exper-
imentation, we may conclude that our proposed Smart
Contract-based architecture and system achieves fed-
eration of resources and automated deployment and
redeployment of applications in a dynamic and decen-
tralised way. It is particularly suitable for two- (or
even multi-) tier AI applications that are engineered
as groups of containers (pods), for example, front and
rare parts of Deep Neural Networks, including pre-
and post-processing methods.

The MDP method can be used for automated
decision-making based on the probability of achiev-
ing high QoS. Based on various QoS metrics and
prior usage data, the MDP method is used to build an

automaton (probabilistic model). Its states represent
all available deployment options, and its transitions
contain probabilities for maintaining an idle state or
(re)deployment of the software components from one
deployment option to another. This happens when a
QoS metric is violated. Then, the automaton is used to:
(1) assess the probability that the QoS will be main-
tained above the threshold (assurances), (2) rank the
available Cloud deployment options, and (3) verify the
results. It was shown that the developed blockchain-
based architecture and system can be used (1) to
federate computing resources close to each other, thus
increasing the available deployment options, and (2)
to manage the SLAs in an automated and stochastic
way.

The experimental evaluation was performed using
43 deployment options from the Fog/Cloud (Tier 1),
5 deployment options from the Edge (Tier 2), and 7
QoS-related metrics. The results from the experimen-
tal evaluation show that the proposed architecture can
be used to rapidly resolve QoS threshold violations,
thus offering solution that will satisfy SLAs and com-
pensate the service consumer when necessary. This
design study forms an integral part of the design of the
DECENTER’s Fog Computing Platform.

With the emergence of new paradigms and tech-
nologies, such as IoT, Blockchain and AI, the Edge-to-
Cloud computing transforms towards intelligent com-
puting and becomes more complex overall. A recent
study in this context has analysed the transformative
effects of related technologies and paradigms on cloud
computing, and revealed new trends and challenges
for energy management, resource management, fault
tolerance, security, privacy and many more topics that
will be addressed in future research [12].

Our future work priorities go into the following
directions. First, we need to improve the MDP method
and to consider various blockchain-based architec-
tures. The MDP method will be further evaluated
and improved for various redeployment scenarios in
multi-tier architectures, such as consolidating pairs of
Edge and Fog deployment options as pairs within the
states of the automaton. The Blockchain Layer, on
the other hand can be furthermore improved by intro-
ducing more Smart Contracts model, interledger sup-
port, which can allow transactions between different
types of ledgers and additionally reduce the cost over
the blockchain operations. Finally, our new Horizon
2020 Research and Innovation Action ONTOCHAIN

688

Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing

(Trusted, traceable and transparent ontological knowl-
edge on blockchain) aims at achieving trust in highly
decentralised environments by means of integration
between Semantic Web and Blockchain technologies
and its novel set of protocols will be directly use-
ful to achieve trusted SLAs across the computing
continuum.

Acknowledgements The research and development reported
in this paper have received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under grant
agreement no. 815141 (DECENTER: Decentralised technolo-
gies for orchestrated Cloud-to-Edge intelligence) and grant
agreement no. 957338 (ONTOCHAIN: Trusted, traceable and
transparent ontological knowledge on blockchain).

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari,
M., Ayyash, M.: Internet of things: a survey on enabling
technologies, protocols, and applications. IEEE Communi-
cations Surveys & Tutorials 17(4), 2347–2376 (2015)

2. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog comput-
ing and its role in the internet of things. In: Proceedings
of the first edition of the MCC workshop on Mobile cloud
computing, pp 13–16. ACM (2012)

3. Buterin, V.: Ethereum white paper. GitHub repository.
https://github.com/ethereum/wiki/wiki/White-Paper (2013)

4. Buyya, R., Garg, S.K., Calheiros, R.N.: Sla-oriented
resource provisioning for cloud computing: Challenges,
architecture, and solutions. In: 2011 International Confer-
ence on Cloud and Service Computing, pp 1–10, IEEE
(2011)

5. Carminati, B., Ferrari, E., Rondanini, C.: Blockchain as
a platform for secure inter-organizational business pro-
cesses. In: 2018 IEEE 4th International Conference on
Collaboration and Internet Computing (CIC), pp. 122–129
(2018)

6. Castillo, E.A., Ahmadinia, A.: Distributed deep convolu-
tional neural network for smart camera image recognition.
In: Proceedings of the 11th International Conference on
Distributed Smart Cameras, pp. 169–173 (2017)

7. Chen, S., Choo, K.R., Fu, X., Lou, W., Mohaisen, A.
(eds.): Security and Privacy in Communication Networks
- 15th EAI International Conference, SecureComm 2019,
Orlando, FL, USA, October 23-25, 2019, Proceedings, Part
I, Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering,
vol. 304. Springer, Berlin (2019)

8. Dastjerdi, A., Gupta, H., Calheiros, R., Ghosh, S.: Chapter
4—fog computing: Principles, architectures, and applica-
tions. ininternet of things: Principles and paradigms, ed. r.
buyya, and av dastjerdi, pp. 61–75 (2016)

9. Ethereum core team: web3.js-ethereum javascript api
v.1.2.7. https://web3js.readthedocs.io/en/v1.2.7/ (2016)

10. Gill, S.S., Buyya, R.: Resource provisioning based
scheduling framework for execution of heterogeneous and

clustered workloads in clouds: from fundamental to auto-
nomic offering. Journal of Grid Computing 17(3), 385–417
(2019)

11. Gill, S.S., Chana, I., Singh, M., Buyya, R.: Chopper:
an intelligent qos-aware autonomic resource management
approach for cloud computing. Clust. Comput. 21(2),
1203–1241 (2018)

12. Gill, S.S., Tuli, S., Xu, M., Singh, I., Singh, K.V., Lind-
say, D., Tuli, S., Smirnova, D., Singh, M., Jain, U., et
al.: Transformative effects of iot, blockchain and artifi-
cial intelligence on cloud computing: Evolution, vision,
trends and open challenges. Internet of Things 8, 100118
(2019)

13. Hang, L., Kim, D.H.: Sla-based sharing economy service
with smart contract for resource integrity in the internet of
things. Appl. Sci. 9(17), 3602 (2019)

14. Kochovski, P., Stankovski, V.: Supporting smart construc-
tion with dependable edge computing infrastructures and
applications. Autom. Constr. 85, 182–192 (2018)

15. Kochovski, P., Drobintsev, P.D., Stankovski, V.: Formal
quality of service assurances, ranking and verification
of cloud deployment options with a probabilistic model
checking method. Information and Software Technology.
https://doi.org/10.1016/j.infsof.2019.01.003 (2019)

16. Kochovski, P., Gec, S., Stankovski, V., Bajec, M., Drobint-
sev, P.D.: Trust management in a blockchain based fog
computing platform with trustless smart oracles. Futur.
Gener. Comput. Syst. 101, 747–759 (2019)

17. Labidi, T., Mtibaa, A., Gaaloul, W., Tata, S., Gargouri,
F.: Cloud Sla modeling and monitoring. In: 2017 IEEE
International Conference on Services Computing (SCC),
pp 338–345, IEEE (2017)

18. Li, X., Ma, H., Zhou, F., Gui, X.: Service operator-aware
trust scheme for resource matchmaking across multiple
clouds. IEEE Trans. Parallel and distributed systems 26(5),
1419–1429 (2014)

19. Mubeen, S., Asadollah, S.A., Papadopoulos, A.V., Ashjaei,
M., Pei-Breivold, H., Behnam, M.: Management of ser-
vice level agreements for cloud services in iot: a systematic
mapping study. IEEE Access 6, 30184–30207 (2017)

20. Müller, C., Oriol, M., Franch, X., Marco, J., Resinas, M.,
Ruiz-Cortés, A., Rodrı́guez, M.: Comprehensive explana-
tion of sla violations at runtime. IEEE Transactions on
Services Computing 7(2), 168–183 (2013)

21. Nakamoto, S.: Bitcoin: a Peer-To-Peer Electronic Cash
System. Tech. rep., Manubot (2019)

22. Paščinski, U., Trnkoczy, J., Stankovski, V., Cigale, M., Gec,
S.: Qos-aware orchestration of network intensive software
utilities within software defined data centres. Journal of
Grid Computing 16(1), 85–112 (2018)

23. Rawat, D.B., Brecher, C., Song, H., Jeschke, S.: Industrial
Internet of Things: Cybermanufacturing Systems. Springer
(2017)

24. Savi, M., Santoro, D., Di Meo, K., Pizzolli, D., Pincheira,
M., Giaffreda, R., Cretti, S., Sw, K.um., Siracusa, D.:
A blockchain-based brokerage platform for fog comput-
ing resource federation. In: Conference on Innovation in
Clouds, Internet and Networks (2020)

25. Scheid, E.J., Rodrigues, B.B., Granville, L.Z., Stiller, B.:
Enabling dynamic Sla compensation using blockchain-
based smart contracts. In: 2019 IFIP/IEEE Symposium

689

https://github.com/ethereum/wiki/wiki/White-Paper
https://web3js.readthedocs.io/en/v1.2.7/
https://doi.org/10.1016/j.infsof.2019.01.003

P. Kochovski et al.

on Integrated Network and Service Management (IM),
pp 53–61. IEEE (2019)

26. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge comput-
ing: Vision and challenges. IEEE Internet of Things Journal
3(5), 637–646 (2016)

27. Singh, S., Chana, I.: Resource provisioning and scheduling
in clouds: Qos perspective. J. Supercomput. 72(3), 926–960
(2016)

28. Singh, S., Chana, I., Buyya, R.: Star: Sla-aware autonomic
management of cloud resources. IEEE Transactions on
Cloud Computing (2017)

29. Song, H., Rawat, D.B., Jeschke, S., Brecher, C.: Cyber-
physical systems: foundations, principles and applications.
Morgan Kaufmann (2016)

30. Song, H., Fink, G.A., Jeschke S: Security and Privacy in
Cyber-Physical Systems. Wiley Online Library (2017)

31. Taherizadeh, S., Stankovski, V.: Dynamic multi-level auto-
scaling rules for containerized applications. Comput. J
62(2), 174–197 (2019)

32. Wöhrer, M., Zdun, U.: Design patterns for smart contracts
in the ethereum ecosystem. In: 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), pp. 1513–1520 (2018)

33. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi,
M.: Internet of things for smart cities. IEEE Internet of
Things journal 1(1), 22–32 (2014)

34. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.:
Town crier: An authenticated data feed for smart contracts.
Cryptology ePrint Archive, Report 2016/168, https://eprint.
iacr.org/2016/168 (2016)

35. Zhang, H., Ye, L., Shi, J., Du, X., Guizani, M.: Verify-
ing cloud service-level agreement by a third-party audi-
tor. Security and Communication Networks 7(3), 492–502
(2014)

36. Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao,
Z.: A blockchain based witness model for trustworthy cloud
service level agreement enforcement. In: IEEE INFOCOM
2019-IEEE Conference on Computer Communications,
pp. 1567–1575. IEEE (2019)

37. Zhou, H., Ouyang, X., Su, J., de Laat, C., Zhao, Z.:
Enforcing trustworthy cloud sla with witnesses: a game
theory–based model using smart contracts. Concurrency
and Computation:, Practice and Experience, pp. e5511
(2019)

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

690

https://eprint.iacr.org/2016/168
https://eprint.iacr.org/2016/168

	Smart Contracts for Service-Level Agreements in Edge-to-Cloud Computing
	Abstract
	Introduction
	Background
	Computing in the Edge-to-Cloud Continuum
	Blockchain Essentials
	Related Works on SLA Management

	Motivation
	Blockchain-based SLA Management
	QoS-aware SLA Assessment
	Architecture Overview
	Process Workflow
	Smart Contract Implementation Details for SLA Management

	Experimental Evaluation
	Probabilistic Decision-making Evaluation
	Blockchain Performance Evaluation
	Critical Analysis

	Conclusion and Future Scope
	References

